ZHANG M Z, LUAN W P, AI X, et al. Short-term substation load forecasting method based on edge computing[J]. Electrical Measurement & Instrumentation, 2024, 61(4): 93-99.
[2]李甲祎, 赵兵, 刘宣, 等. 基于DWT-Informer的台区短期负荷预测[J]. 电测与仪表, 2024, 61(3): 160-166, 191.
LI J Y, ZHAO B, LIU X, et al. Short-term substation load forecasting based on DWT-Informer model[J]. Electrical Measurement & Instrumentation, 2024, 61(3): 160-166, 191.
[3]习伟, 蔡田田, 张镇, 等. 融合多元影响因素的配电台区BiLSTM负荷预测方法[J]. 天津大学学报(自然科学与工程技术版), 2023, 56(11): 1205-1216.
XI W, CAI T T, ZHANG Z, et al. BiLSTM load forecasting method for transformer districts integrated with multiple influencing factors[J]. Journal of Tianjin University (Science and Technology), 2023, 56(11): 1205-1216.
[4]季玉琦, 严亚帮, 和萍, 等. 基于K-Medoids聚类与栅格法提取负荷曲线特征的CNN-LSTM短期负荷预测[J]. 电力系统保护与控制, 2023, 51(18): 81-93.
JI Y Q, YAN Y B, HE P, et al. CNN-LSTM short-term load forecasting based on the K-Medoids clustering and grid method to extract load curve features[J]. Power System Protection and Control, 2023, 51(18): 81-93.
[5]魏骜, 茅大钧, 韩万里, 等. 基于EMD和长短期记忆网络的短期电力负荷预测研究[J]. 热能动力工程, 2020, 35(4): 203-209.
WEI A, MAO D J, HAN W L, et al. Short-term load forecasting based on EMD and long short-term memory neural networks[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4): 203-209.
[6]张建寰, 吉莹, 陈立东. 深度学习在电力负荷预测中的应用[J]. 自动化仪表, 2019, 40(8): 8-12, 17.
ZHANG J H, JI Y, CHEN L D. Application of deep learning in power load forecasting[J]. Process Automation Instrumentation, 2019, 40(8): 8-12, 17.
[7]ZHANG S Q, ZHANG N J, ZHANG Z Q, et al. Electric power load forecasting method based on a support vector machine optimized by the improved seagull optimization algorithm[J]. Energies, 2022, 15(23): 9197.
[8]LI C, GUO Q J, SHAO L, et al. Research on short-term load forecasting based on optimized GRU neural network[J]. Electronics, 2022, 11(22): 3834.
[9]LI M X, ZHANG T Y, YANG H Z, et al. Multiple load forecasting of integrated renewable energy system based on TCN-FECAM-informer[J]. Energies, 2024, 17(20): 5181.
[10] SU Z Y, ZENG J H, LIU J, et al. A short-term power load forecasting approach based on EMD-SSA-LSTM[J]. Journal of Physics: Conference Series, 2024, 2774(1): 012005.
[11]WEN Y, PAN S, LI X X, et al. Highly fluctuating shortterm load forecasting based on improved secondary decomposition and optimized VMD[J]. Sustainable Energy, Grids and Networks, 2024, 37: 101270.
[12] SONG K Y, YU Y, ZHANG T F, et al. Short-term load forecasting based on CEEMDAN and dendritic deep learning[J]. Knowledge-Based Systems, 2024, 294: 111729.
[13]穆晨宇, 薛文斌, 穆羡瑛, 等. 基于VMD-LSTM-Attention模型的短期负荷预测研究[J]. 现代电子技术, 2023, 46(17): 174-178.
MU C Y, XUE W B, MU X Y, et al. Research on shortterm load forecasting based on VMD-LSTM-Attention model[J]. Modern Electronics Technique, 2023, 46(17): 174-178.
[14]贾世会, 刘立夫, 迟晓妮, 等. 基于BWO和WOA的VMD-LSTM短期风速预测[J].郑州大学学报(工学版), 2025,46(3):59-66.
JIA S H, LIU L F, CHI X N, et al. VMD-LSTM shortterm wind speed prediction model based on BWO and WOA[J]. Journal of Zhengzhou University (Engineering Science), 2025,46(3):59-66.
[15]蒋建东, 张海峰, 郭嘉琦. 基于改进蜣螂优化算法的短期风电功率预测[J]. 郑州大学学报(工学版), 2025,46(4):129-136.
JIANG J D, ZHANG H F, GUO J Q. Short-term wind power prediction based on improved dung beetle optimization algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2025,46(4):129-136.
[16] CHEN Z X, JIN T, ZHENG X D, et al. An innovative method-based CEEMDAN-IGWO-GRU hybrid algorithm for short-term load forecasting[J]. Electrical Engineering, 2022, 104(5): 3137-3156.
[17] BRAIK M, HAMMOURI A, ATWAN J, et al. White shark optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problems[J]. KnowledgeBased Systems, 2022, 243: 108457.
[18] LIU M P, SUN X H, WANG Q N, et al. Short-term load forecasting using EMD with feature selection and TCNbased deep learning model[J]. Energies, 2022, 15(19): 7170.
[19] ZHOU F Z, ZHOU H, LI Z Y, et al. Multi-step ahead short-term electricity load forecasting using VMD-TCN and error correction strategy[J]. Energies, 2022, 15(15): 5375.
[20] CAI C C, LI Y J, SU Z H, et al. Short-term electrical load forecasting based on VMD and GRU-TCN hybrid network[J]. Applied Sciences, 2022, 12(13): 6647.