[1]蒋建东,韩文轩,赵云飞,等.基于优化VMD二次分解的短期电力负荷预测[J].郑州大学学报(工学版),2026,47(01):124-130.[doi:10.13705/j.issn.1671-6833.2025.04.016]
 JIANG Jiandong,HAN Wenxuan,ZHAO Yunfei,et al.Short-term Power Load Forecasting Based on Optimized VMD Secondary Decomposition[J].Journal of Zhengzhou University (Engineering Science),2026,47(01):124-130.[doi:10.13705/j.issn.1671-6833.2025.04.016]
点击复制

基于优化VMD二次分解的短期电力负荷预测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年01期
页码:
124-130
栏目:
出版日期:
2026-01-06

文章信息/Info

Title:
Short-term Power Load Forecasting Based on Optimized VMD Secondary Decomposition
文章编号:
1671-6833(2026)01-0124-07
作者:
蒋建东1 韩文轩1 赵云飞1 燕跃豪2 鲍 薇2 刘晓辉2
1.郑州大学 电气与信息工程学院,河南 郑州 450001;2.国网河南省电力公司郑州供电公司,河南 郑州 450006
Author(s):
JIANG Jiandong1 HAN Wenxuan1 ZHAO Yunfei1 YAN Yuehao2 BAO Wei2 LIU Xiaohui2
1.School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.Zhengzhou Power Supply Company of State Grid Henan Electric Power Company, Zhengzhou 450006, China
关键词:
二次分解 负荷预测 完全自适应噪声集合经验模态分解 变分模态分解 时间卷积网络
Keywords:
secondary decomposition load forecasting complete ensemble empirical mode decomposition with adaptive noise variational mode decomposition temporal convolutional network
分类号:
TM715TP183
DOI:
10.13705/j.issn.1671-6833.2025.04.016
文献标志码:
A
摘要:
针对台区配变负荷数据复杂度高、波动性强的特点,提出了一种基于二次分解和时间卷积网络的短期电力负荷预测模型。首先,使用最大互信息系数法对高维特征的负荷数据集进行特征提取;其次,采用完全自适应噪声集合经验模态分解和优化变分模态分解对配变负荷数据进行二次分解;再次,将两次分解得到的子序列输入时间卷积网络模型中进行预测;最后,将各子序列的预测结果叠加,得到最终的负荷预测结果。在郑州市某台区配变负荷数据上进行仿真分析,与传统时间卷积网络模型相比,所提模型MAE、MAPE和RMSE分别减少了64.29%,9.66百分点和59.00%。实验结果表明,所提组合预测模型具有更好的预测效果和更高的预测精度。
Abstract:
A short-term power load forecasting model based on secondary decomposition and temporal convolutional networks was proposed in response to the high complexity and strong fluctuation of transformer load data in the station area. Firstly, the maximum information coefficient method was used to extract features from the high-dimensional load dataset. Secondly, complete ensemble empirical mode decomposition with adaptive noise and optimized variational mode decomposition were employed to perform secondary decomposition on the transformer load data. Then, the sub-sequences obtained from the two decompositions were input into the temporal convolutional network model for prediction. Finally, the prediction results of each sub-sequence were superimposed to obtain the final load forecasting result. Simulation analysis was conducted on the load data of a distribution transformer in a certain district of Zhengzhou City. Compared with the traditional time convolutional network model, the proposed model reduced MAE, MAPE, and RMSE by 64.29%, 9.66 percentage points, and 59.00% respectively. The experimental results showed that the proposed combined forecasting model had better forecasting effects and higher prediction accuracy.

参考文献/References:

[1]张明泽, 栾文鹏, 艾欣, 等. 基于边缘计算的台区短期负荷预测方法[J]. 电测与仪表, 2024, 61(4): 93-99.

ZHANG M Z, LUAN W P, AI X, et al. Short-term substation load forecasting method based on edge computing[J]. Electrical Measurement & Instrumentation, 2024, 61(4): 93-99.
[2]李甲祎, 赵兵, 刘宣, 等. 基于DWT-Informer的台区短期负荷预测[J]. 电测与仪表, 2024, 61(3): 160-166, 191.
LI J Y, ZHAO B, LIU X, et al. Short-term substation load forecasting based on DWT-Informer model[J]. Electrical Measurement & Instrumentation, 2024, 61(3): 160-166, 191.
[3]习伟, 蔡田田, 张镇, 等. 融合多元影响因素的配电台区BiLSTM负荷预测方法[J]. 天津大学学报(自然科学与工程技术版), 2023, 56(11): 1205-1216.
XI W, CAI T T, ZHANG Z, et al. BiLSTM load forecasting method for transformer districts integrated with multiple influencing factors[J]. Journal of Tianjin University (Science and Technology), 2023, 56(11): 1205-1216.
[4]季玉琦, 严亚帮, 和萍, 等. 基于K-Medoids聚类与栅格法提取负荷曲线特征的CNN-LSTM短期负荷预测[J]. 电力系统保护与控制, 2023, 51(18): 81-93.
JI Y Q, YAN Y B, HE P, et al. CNN-LSTM short-term load forecasting based on the K-Medoids clustering and grid method to extract load curve features[J]. Power System Protection and Control, 2023, 51(18): 81-93.
[5]魏骜, 茅大钧, 韩万里, 等. 基于EMD和长短期记忆网络的短期电力负荷预测研究[J]. 热能动力工程, 2020, 35(4): 203-209.
WEI A, MAO D J, HAN W L, et al. Short-term load forecasting based on EMD and long short-term memory neural networks[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4): 203-209.
[6]张建寰, 吉莹, 陈立东. 深度学习在电力负荷预测中的应用[J]. 自动化仪表, 2019, 40(8): 8-12, 17.
ZHANG J H, JI Y, CHEN L D. Application of deep learning in power load forecasting[J]. Process Automation Instrumentation, 2019, 40(8): 8-12, 17.
[7]ZHANG S Q, ZHANG N J, ZHANG Z Q, et al. Electric power load forecasting method based on a support vector machine optimized by the improved seagull optimization algorithm[J]. Energies, 2022, 15(23): 9197.
[8]LI C, GUO Q J, SHAO L, et al. Research on short-term load forecasting based on optimized GRU neural network[J]. Electronics, 2022, 11(22): 3834.
[9]LI M X, ZHANG T Y, YANG H Z, et al. Multiple load forecasting of integrated renewable energy system based on TCN-FECAM-informer[J]. Energies, 2024, 17(20): 5181.
[10] SU Z Y, ZENG J H, LIU J, et al. A short-term power load forecasting approach based on EMD-SSA-LSTM[J]. Journal of Physics: Conference Series, 2024, 2774(1): 012005.
[11]WEN Y, PAN S, LI X X, et al. Highly fluctuating shortterm load forecasting based on improved secondary decomposition and optimized VMD[J]. Sustainable Energy, Grids and Networks, 2024, 37: 101270.
[12] SONG K Y, YU Y, ZHANG T F, et al. Short-term load forecasting based on CEEMDAN and dendritic deep learning[J]. Knowledge-Based Systems, 2024, 294: 111729.
[13]穆晨宇, 薛文斌, 穆羡瑛, 等. 基于VMD-LSTM-Attention模型的短期负荷预测研究[J]. 现代电子技术, 2023, 46(17): 174-178.
MU C Y, XUE W B, MU X Y, et al. Research on shortterm load forecasting based on VMD-LSTM-Attention model[J]. Modern Electronics Technique, 2023, 46(17): 174-178.
[14]贾世会, 刘立夫, 迟晓妮, 等. 基于BWO和WOA的VMD-LSTM短期风速预测[J].郑州大学学报(工学版), 2025,46(3):59-66.
JIA S H, LIU L F, CHI X N, et al. VMD-LSTM shortterm wind speed prediction model based on BWO and WOA[J]. Journal of Zhengzhou University (Engineering Science), 2025,46(3):59-66.
[15]蒋建东, 张海峰, 郭嘉琦. 基于改进蜣螂优化算法的短期风电功率预测[J]. 郑州大学学报(工学版), 2025,46(4):129-136.
JIANG J D, ZHANG H F, GUO J Q. Short-term wind power prediction based on improved dung beetle optimization algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2025,46(4):129-136.
[16] CHEN Z X, JIN T, ZHENG X D, et al. An innovative method-based CEEMDAN-IGWO-GRU hybrid algorithm for short-term load forecasting[J]. Electrical Engineering, 2022, 104(5): 3137-3156.
[17] BRAIK M, HAMMOURI A, ATWAN J, et al. White shark optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problems[J]. KnowledgeBased Systems, 2022, 243: 108457.
[18] LIU M P, SUN X H, WANG Q N, et al. Short-term load forecasting using EMD with feature selection and TCNbased deep learning model[J]. Energies, 2022, 15(19): 7170.
[19] ZHOU F Z, ZHOU H, LI Z Y, et al. Multi-step ahead short-term electricity load forecasting using VMD-TCN and error correction strategy[J]. Energies, 2022, 15(15): 5375.
[20] CAI C C, LI Y J, SU Z H, et al. Short-term electrical load forecasting based on VMD and GRU-TCN hybrid network[J]. Applied Sciences, 2022, 12(13): 6647.

相似文献/References:

[1]包毅,胡静,郭含,等.郑州轨道交通供电系统负荷预测及影响研究[J].郑州大学学报(工学版),2013,34(03):18.[doi:10.3969/j.issn.1671-6833.2013.03.005]
 BAO Yi,HU Jing,GUO Han,et al.Study on Zhengzhou Metro Traction Power System Load Forecast and Impact[J].Journal of Zhengzhou University (Engineering Science),2013,34(01):18.[doi:10.3969/j.issn.1671-6833.2013.03.005]
[2]蔡泽祥,侯汝锋,尹亮..考虑最大负荷预测的地区电网静态安全分析研究[J].郑州大学学报(工学版),2005,26(02):18.[doi:10.3969/j.issn.1671-6833.2005.02.005]
 Zhou Renjun,XU Zhisheng,Yang Hongming.Application of fuzzy optimization in comprehensive decision-making of power grid planning[J].Journal of Zhengzhou University (Engineering Science),2005,26(01):18.[doi:10.3969/j.issn.1671-6833.2005.02.005]

更新日期/Last Update: 2026-01-17