[1]QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106.[2]WITTEN I H, FRANK E. HALL M A. Data mining: practical machine learning tools and techniques[M].3rd ed. Amsterdam: Elsevier Inc., 2011.
[3]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6): 84-90.
[4]GÜLER R A, NEVEROVA N, KOKKINOS I. DensePose: dense human pose estimation in the wild[EB/OL]. (2018-02-01)[2025-04-02]. https:∥arxiv.org/abs/1802.00434.
[5]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[6]CHEN C H, WANG S F, HUANG S Z. An improved faster RCNN-based weld ultrasonic atlas defect detection method[J]. Measurement and Control, 2023, 56(3/4): 832-843.
[7]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[8]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway: IEEE, 2016: 779-788.
[9]LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]∥14th European Conference on Computer Vision, ECCV 2016. Cham: Springer, 2016: 21-37.
[10] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.
[11]徐云飞, 张笃周, 王立, 等. 非合作目标局部特征识别轻量化特征融合网络设计[J]. 红外与激光工程, 2020, 49(7): 265-271.
XU Y F, ZHANG D Z, WANG L, et al. Lightweight feature fusion network design for local feature recognition of non-cooperative target[J]. Infrared and Laser Engineering, 2020, 49(7): 265-271.
[12]刘慧, 张礼帅, 沈跃, 等. 基于改进SSD的果园行人实时检测方法[J]. 农业机械学报, 2019, 50(4): 2935, 101.
LIU H, ZHANG L S, SHEN Y, et al. Real-time pedestrian detection in orchard based on improved SSD[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 29-35, 101.
[13]毛亮, 薛月菊, 朱婷婷, 等. 自然场景下的挖掘机实时监测方法[J]. 农业工程学报, 2020, 36(9): 214-220.
MAO L, XUE Y J, ZHU T T, et al. Method for the realtime monitoring of the excavator in natural scene[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 214-220.
[14]任坤, 黄泷, 范春奇, 等. 基于多尺度像素特征融合的实时小交通标志检测算法[J]. 信号处理, 2020, 36(9): 1457-1463.
REN K, HUANG L, FAN C Q, et al. Real-time small traffic sign detection algorithm based on multi-scale pixel feature fusion[J]. Journal of Signal Processing, 2020,
[15] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 936-944.
[16] GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 7029-7038.
[17] LI H Y, MIAO S Y, FENG R. DG-FPN: learning dynamic feature fusion based on graph convolution network for object detection[C]∥2020 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2020: 1-6.
[18] GUO C X, FAN B, ZHANG Q, et al. AugFPN: improving multi-scale feature learning for object detection[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 12592-12601.
[19]赵珊, 刘子路, 郑爱玲, 等. 基于MobileNetV2和IFPN改进的SSD垃圾实时分类检测方法[J]. 计算机应用, 2022, 42(增刊1): 106-111.
ZHAO S, LIU Z L, ZHENG A L, et al. Real-time classificaiton and detection method of garbage based on SSD improved with mobileNetV2 and IFPN[J]. Journal of Computer Applications, 2022, 42(S1): 106-111.
[20]种法广, 温蜜, 田英杰, 等. 基于注意力机制的多尺度缺陷绝缘子检测算法[J]. 计算机仿真, 2022, 39(7): 137-142, 147.
CHONG F G, WEN M, TIAN Y J, et al. Multi-scale defect insulator detection algorithm based on attention mechanism[J]. Computer Simulation, 2022, 39(7): 137142, 147.
[21] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 2999-3007.
[22] TONG K, WU Y Q. Rethinking PASCAL-VOC and MSCOCO dataset for small object detection[J]. Journal of Visual Communication and Image Representation, 2023, 93: 103830.