[1]王文帅,张 鹏,尉晓雪,等.纳米SiO2和混杂纤维增强ECRM粘结特性研究[J].郑州大学学报(工学版),2026,47(01):95-101(123).[doi:10.13705/j.issn.1671-6833.2025.04.025]
 WANG Wenshuai,ZHANG Peng,WEI Xiaoxue,et al.Study on the Bonding Properties of Nano-SiO2 and Hybrid Fiber Reinforced ECRM[J].Journal of Zhengzhou University (Engineering Science),2026,47(01):95-101(123).[doi:10.13705/j.issn.1671-6833.2025.04.025]
点击复制

纳米SiO2和混杂纤维增强ECRM粘结特性研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年01期
页码:
95-101(123)
栏目:
出版日期:
2026-01-06

文章信息/Info

Title:
Study on the Bonding Properties of Nano-SiO2 and Hybrid Fiber Reinforced ECRM
文章编号:
1671-6833(2026)01-0095-07
作者:
王文帅1 张 鹏1 尉晓雪2 吴靖江2 张承实2
1.郑州大学 水利与交通学院,河南 郑州 450001;2.中建七局交通建设有限公司,河南 郑州 450003
Author(s):
WANG Wenshuai1 ZHANG Peng1 WEI Xiaoxue2 WU Jingjiang2 ZHANG Chengshi2
1.School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; 2.Communications Construction Company of CSCEC 7th Division Co., Ltd., Zhengzhou 450003,China
关键词:
纳米SiO2 混杂纤维 环氧树脂 界面弯拉强度 增强机理
Keywords:
nano-SiO2 hybrid fiber epoxy resin interface flexural bonding strength strengthening mechanism
分类号:
TU528.58TU502TV431.3
DOI:
10.13705/j.issn.1671-6833.2025.04.025
文献标志码:
A
摘要:
为了制备出高性能的环氧树脂水泥基修复材料(ECRM),有效解决大坝裂缝修复问题,通过界面弯拉强度试验分析了环氧树脂、纳米SiO2和钢-PVA混杂纤维的掺量对水泥基修复材料粘结性能的影响,通过扫描电子显微镜试验揭示了水泥基修复材料粘结性能的增强机理。研究结果表明:随着环氧树脂、钢纤维和PVA纤维掺量的增加,水泥基修复材料的界面弯拉强度均呈现先升高后降低的变化趋势。当环氧树脂的掺量为9%(质量分数,下同),PVA纤维的体积掺量为0.9%(体积分数,下同)和钢纤维的体积掺量为1.2%时,水泥基修复材料的界面弯拉强度达到最大,此时相比于基准组(未掺环氧树脂、纳米SiO2、PVA纤维和钢纤维)提升了68.2%;随着纳米SiO2的掺量从0增加到2.0%,水泥基修复材料的界面弯拉强度逐渐增大,增幅为14.7%;相比于掺加纳米SiO2、钢纤维或PVA纤维,掺加环氧树脂对水泥基修复材料粘结性能的提升效果更加显著。水泥基修复材料粘结性能的微观增强机理可归结为环氧树脂和钢-PVA混杂纤维的掺入能够抑制基体内裂缝的产生和扩展,提高基体的整体性。纳米SiO2的掺入能够减少基体内部的孔洞缺陷,提高基体的密实度。
Abstract:
To prepare high-performance epoxy resin cementitious repair materials (ECRM) for effectively addressing dam crack rehabilitation, the influence of the content of epoxy resin, nano-SiO2, and steel-PVA hybrid fiber on the bonding properties of cementitious repair materials was analyzed by the interface flexural bonding strength test. The strengthening mechanism of the bonding properties of cementitious repair materials was revealed by the scanning electron microscope test. The results showed that the interface flexural bonding strength of cementitious repair materials increased first, and then decreased with the increase of epoxy resin, steel fiber, and PVA fiber content. When the content of epoxy resin was 9% (mass fraction, the same below), the volume content of PVA fiber was 0.9% (volume fraction, the same below), and the volume content of steel fiber was 1.2%, the interface flexural bonding strength of cementitious repair materials reached the maximum, which was an increase of 68.2% compared to the control group (without epoxy resin, nano-SiO2, PVA fibers, and steel fibers). As the content of nano-SiO2 increased from 0% to 2.0%, the interface flexural bonding strength of cementitious repair materials gradually rosed with an increase of 14.7%. Compared to nano-SiO2, steel fiber, or PVA fiber, the addition of epoxy resin had a more significant effect on the improvement of the bonding properties of cementitious repair materials. The microscopic strengthening mechanism of cementitious repair materials could be concluded as follows, the addition of epoxy resin and steel-PVA hybrid fiber could inhibit the formation and expansion of cracks in the matrix and improve the integrity of the matrix. The addition of nano-SiO2 could reduce the hole defects in the matrix and improve the compactness of the matrix.

参考文献/References:

[1]叶丹玫, 孙振平, 郑柏存, 等. 聚合物改性水泥基修补材料的研究现状及发展措施[J]. 材料导报, 2012, 26(7): 131-135.

YE D M, SUN Z P, ZHENG B C, et al. Current research status and development initiative of polymer-modified cementitious repair material[J]. Materials Review, 2012, 26(7): 131-135.
[2]李刊, 魏智强, 乔宏霞, 等. 纳米SiO2改性聚合物水泥基材料性能试验研究[J]. 湖南大学学报(自然科学版), 2021, 48(11): 150-159.
LI K, WEI Z Q, QIAO H X, et al. Experimental study on property of polymer cement based composite modified by nano-SiO2[J]. Journal of Hunan University (Natural Sciences), 2021, 48(11): 150-159.
[3]肖其远, 朱英英, 杨奕, 等. 纳米SiO2对不同条件下聚合物改性砂浆强度的影响[J]. 混凝土, 2022(2): 136-139.
XIAO Q Y, ZHU Y Y, YANG Y, et al. Effects of nanoSiO2 on mechanical properties of polymer modified mortar under different environments[J]. Concrete, 2022(2): 136-139.
[4]买淑芳, 方文时, 杨伟才, 等. 海岛结构环氧树脂材料的抗冲磨试验研究[J]. 水利学报, 2005, 36(12): 1498-1502.
MAI S F, FANG W S, YANG W C, et al. Experimental study on abrasion resistant performance of epoxy resin with sea island structure[J]. Journal of Hydraulic Engineering, 2005, 36(12): 1498-1502.
[5]郭寅川, 杨雪瑞, 申爱琴, 等. 湿热环境下玄武岩纤维桥面混凝土早期抗裂性[J]. 郑州大学学报(工学版), 2023, 44(6): 99-104, 118.
GUO Y C, YANG X R, SHEN A Q, et al. Early cracking resistance of basalt fiber bridge deck concrete in hot and humid environment[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(6): 99-104, 118.
[6]魏士尧. 纳米SiO2和混杂纤维增强环氧树脂水泥基修复材料力学性能研究[D]. 郑州: 郑州大学, 2023.
WEI S Y. Mechanical properties of nano-SiO2 and hybrid fiber reinforced epoxy resin cementitious repair materials[D]. Zhengzhou: Zhengzhou University, 2023.
[7]中华人民共和国工业和信息化部. 修补砂浆: JC/T 2381—2016[S]. 北京: 中国建材工业出版社, 2016.
Ministry of Industry and Information Technology of the People′s Republic of China. Repairing mortar: JC/T 2381—2016[S]. Beijing: China Building Materials Industry Press, 2016.
[8]徐奎生. 环氧树脂乳液改性水泥砂浆性能的研究[D]. 重庆: 重庆交通大学, 2012.
XU K S. Study on properties of epoxy resin emulsion modified cement mortar[D]. Chongqing: Chongqing Jiaotong University, 2012.
[9]GUO S Y, ZHANG X, CHEN J Z, et al. Mechanical and interface bonding properties of epoxy resin reinforced Portland cement repairing mortar[J]. Construction and Building Materials, 2020, 264: 120715.
[10] ZHENG Z, LI Y X, HE S A, et al. High density and high strength cement-based mortar by modification with epoxy resin emulsion[J]. Construction and Building Materials, 2019, 197: 319-330.
[11] HARMUTH H. Investigation of the adherence and the fracture behaviour of polymer cement concrete[J]. Cement and Concrete Research, 1995, 25(3): 497-502.
[12]李国民. 耐盐冻水泥基修补材料与旧混凝土粘结性能研究[J]. 新型建筑材料, 2019, 46(4): 20-23.
LI G M. Study on the bonding properties of salt-resistant cement based patching material with old concrete[J]. New Building Materials, 2019, 46(4): 20-23.
[13]乔庆浩, 李志华, 张聪. 硅灰增强混杂纤维水泥基灌浆料与老混凝土粘结强度研究[J]. 功能材料, 2020,51(6): 6143-6149.
QIAO Q H, LI Z H, ZHANG C. Study on bond strength of silica fume reinforced hybrid fiber cement based grouting materialand old concret[J]. Journal of Functional Materials, 2020, 51(6): 6143-6149.
[14]张成龙, 刘漪, 张明. PP/PVA纤维增强硫铝酸盐水泥基快速修补材料试验研究[J]. 硅酸盐通报, 2021, 40(7): 2174-2183.
ZHANG C L, LIU Y, ZHANG M. PP/PVA fiber reinforced sulphoaluminate cement-based rapid repair material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2174-2183.
[15]高丹盈, 程红强. 纤维混凝土与既有混凝土黏结性能研究[M]. 北京: 科学出版社, 2008.
GAO D Y, CHENG H Q. Study on bond performance of fiber reinforced concrete and existing concrete[M]. Beijing: Science Press, 2008.
[16]卜良桃, 罗兴华. 钢纤维水泥砂浆与老混凝土双面剪切粘结性能研究[J]. 工业建筑, 2009, 39(9): 90-94.
BU L T, LUO X H. Two-sided shearing bonding strength of steel fiber cement mortar to old concrete[J]. Industrial Construction, 2009, 39(9): 90-94.
[17]陈正发, 陈振飞, 刘健鹏, 等. 碳纳米管改性黏土力学性能及微观机制研究[J]. 郑州大学学报(工学版), 2022, 43(4): 86-91.
CHEN Z F, CHEN Z F, LIU J P, et al. Experimental study on mechanical properties and micro-mechanism of clay modified by carbon nanotubes[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(4): 86-91.
[18]陈广, 孙敏, 孔令康, 等. PVA-纳米SiO2混杂纤维混凝土力学性能研究[J]. 苏州科技大学学报(工程技术版), 2022, 35(2): 9-14.
CHEN G, SUN M, KONG L K, et al. Study on mechanical properties of PVA-nano-SiO2 hybrid fiber concrete[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology Edition), 2022, 35(2): 9-14.
[19] MOHAMMADALIPOUR M, MASOOMI M, AHMADI M, et al. Interfacial shear strength characterization of GMAgrafted UHMWPE fiber/epoxy/nano clay hybrid nanocomposite materials[J]. RSC Advances, 2016, 6(48): 41793-41799.
[20] HU Y, GAO S L. Macro mechanical properties and microstructure analysis of nano-modified ECC at low temperature[J]. Journal of Testing and Evaluation, 2022, 50(4): 2156-2174.

更新日期/Last Update: 2026-01-17