[1]杨火根,王 艳,骆 伟.改进粒子群算法的无人机 B 样条曲线路径规划[J].郑州大学学报(工学版),2025,46(04):8-15.[doi:10.13705/j.issn.1671-6833.2025.04.014]
 YANG Huogen,WANG Yan,et al.Improved Particle Swarm Algorithm for B-spline Curve Path Planning of Unmanned Aerial Vehicles[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):8-15.[doi:10.13705/j.issn.1671-6833.2025.04.014]
点击复制

改进粒子群算法的无人机 B 样条曲线路径规划()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年04期
页码:
8-15
栏目:
出版日期:
2025-07-10

文章信息/Info

Title:
Improved Particle Swarm Algorithm for B-spline Curve Path Planning of Unmanned Aerial Vehicles
文章编号:
1671-6833(2025)04-0008-08
作者:
杨火根12 王 艳1 骆 伟3
1. 江西理工大学 理学院,江西 赣州 341000;2. 江西理工大学 多维智能感知与控制江西省重点实验室,江西 赣州341000;3. 江西理工大学 体育与艺术学院,江西 赣州 341000
Author(s):
YANG Huogen1 2 WANG Yan1 LUO Wei3
1. School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2. Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; 3. School of Sports and Arts, Jiangxi University of Science and Technology, Ganzhou 341000, China
关键词:
无人机 B 样条曲线 路径规划 避障 改进粒子群算法
Keywords:
UAV B-spline curves path planning obstacle avoidance improved particle swarm algorithm
分类号:
TP18V249V279
DOI:
10.13705/j.issn.1671-6833.2025.04.014
文献标志码:
A
摘要:
针对粒子群算法在无人机路径规划中易陷入局部最优解,且在离散路径点光滑处理后对避障考虑不足的问题,提出一种基于改进粒子群算法的无人机三维 B 样条曲线路径规划方法。 首先,综合考虑无人机路径长度、安全避障、飞行高度及平稳性等飞行性能要求,利用 B 样条曲线的几何性质构建路径规划模型; 其次,采用改进的粒子群算法对模型进行求解,算法改进主要通过优化粒子初始化策略、惯性权重因子和学习因子更新策略、增加粒子扰动策略来实现;最后,在 CEC2017 标准测试函数集上进行测试。 结果表明:改进的粒子群算法在对比算法中表现出更强的寻优能力,稳定性也更好。 两个场景的仿真结果表明:所规划的路径代价可减少 2%,稳定性可提高 65%,路径安全避障且 C2 连续,能满足无人机飞行综合性能要求。
Abstract:
To address the problem of getting stuck in local optimal solutions in UAV path planning with particle swarm algorithm and insufficient consideration for obstacle avoidance after smoothing discrete path points, a threedimensional B-spline curve path planning method for unmanned aerial vehicles based on an improved particle swarm algorithm was proposed. Firstly, considering the flight performance requirements such as UAV path length, safe obstacle avoidance, flight altitude, and smoothness, a path planning model was constructed using the geometric properties of B-spline curves. Then, an improved particle swarm algorithm was used to solve the model. The algorithm improvement was mainly achieved by optimizing the particle initialization strategy, updating the inertia weight factor and learning factor strategy, and increasing the particle perturbation strategy. The test results on the CEC2017 standard test function set showed that the improved particle swarm algorithm exhibited stronger optimization ability and better stability compared to other algorithms. The simulation results of two scenarios showed that the planned path cost was reduced by 2%, stability was improved by 65%, path safety avoided obstacles and C 2 was continuous, which could meet the comprehensive performance requirements of UAV flight.

参考文献/References:

[1] RADMANESH M, KUMAR M, GUENTERT P H, et al. Overview of path-planning and obstacle avoidance algorithms for UAVs: a comparative study [ J ] . Unmanned Systems, 2018, 6(2) : 95-118. 

[2] PUENTE-CASTRO A, RIVERO D, PAZOS A, et al. A review of artificial intelligence applied to path planning in UAV swarms [ J ] . Neural Computing and Applications, 2022, 34(1) : 153-170. 
[3] SUN J Y, TANG J, LAO S Y. Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm[ J] . IEEE Access, 2017, 5: 18382-18390. 
[4] 陈江义, 殷笑勇, 王婷婷, 等. 基于改进斥力模型的 人工势 场 局 部 路 径 规 划 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023, 44(3) : 83-87, 101. 
CHEN J Y, YIN X Y, WANG T T, et al. Local path planning of artificial potential field based on improved repulsive model[ J] . Journal of Zhengzhou University ( Engineering Science) , 2023, 44(3) : 83-87, 101. 
[5] AIT-SAADI A, MERAIHI Y, SOUKANE A, et al. A novel hybrid chaotic Aquila optimization algorithm with simulated annealing for unmanned aerial vehicles path planning[ J] . Computers and Electrical Engineering, 2022, 104: 108461. 
[6] JIN Q B, TANG C N, CAI W. Research on dynamic path planning based on the fusion algorithm of improved ant colony optimization and rolling window method[ J] . IEEE Access, 2021, 10: 28322-28332.
[7] XIONG T, LI H, DING K, et al. A hybrid improved symbiotic organisms search and sine-cosine particle swarm optimization method for drone 3D path planning [ J ] . Drones, 2023, 7(10) : 633. 
[8] 高岳林, 武少华. 基于自适应粒子群算法的机器人路 径规划[ J] . 郑州大学学报( 工学版) , 2020, 41( 4) : 46-51. 
GAO Y L, WU S H. Robot path planning based on adaptive particle swarm optimization[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(4): 46-51. 
[9] BAO Y Y, LIU Y, WANG J S, et al. Genetic algorithm based on grid maps for solving robot path planning problem [J]. Engineering letters, 2023, 31(4): 1635-1648. 
[10] ROBERGE V, TARBOUCHI M, LABONTÉ G. Fast genetic algorithm path planner for fixed-wing military UAV using GPU[ J] . IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5) : 2105-2117. 
[11] 施法中. 计算机辅助几何设计与非均匀有理 B 样条 [M] . 2 版. 北京: 高等教育出版社, 2013. 
SHI F Z. CAGD & NURBS[M] . 2nd ed. Beijing: Higher Education Press, 2013. 
[12] HUO F C, ZHU S, DONG H L, et al. A new approach to smooth path planning of Ackerman mobile robot based on improved ACO algorithm and B-spline curve[ J] . Robotics and Autonomous Systems, 2024, 175: 104655. 
[13] LIU M J, ZHANG H X, YANG J, et al. A path planning algorithm for three-dimensional collision avoidance basedon potential field and B-spline boundary curve[ J] . Aerospace Science and Technology, 2024, 144: 108763. 
[14] YAN J F, DENG T, XU B H. Three dimensional path planning for flying car based on improved A algorithm and Bezier curve fusion[ J] . Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2025, 239(6) : 2205-2219. 
[15] PHUNG M D, HA Q P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[ J] . Applied Soft Computing, 2021, 107: 107376. 
[16] QI Z, SHAO Z H, PING Y S, et al. An improved heuristic algorithm for UAV path planning in 3D environment [ C]∥2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics. Piscataway: IEEE, 2010: 258-261. 
[17] 黄书召, 田军委, 乔路, 等. 基于改进遗传算法的无人 机路径规划[J]. 计算机应用, 2021, 41(2): 390-397. 
HUANG S Z, TIAN J W, QIAO L, et al. Unmanned aerial vehicle path planning based on improved genetic algorithm[ J] . Journal of Computer Applications, 2021, 41 (2) : 390-397. 
[18] SHI Y, EBERHART R. A modified particle swarm optimizer[C]∥IEEE World Congress on Computational Intelligence. Piscataway: IEEE, 2002: 69-73. 
[19] ARORA S, ANAND P. Chaotic grasshopper optimization algorithm for global optimization [ J] . Neural Computing and Applications, 2019, 31(8) : 4385-4405. 
[20] SHI Y, EBERHART R C. Empirical study of particle swarm optimization[ C]∥Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1945-1950. 
[21] ZHAO W G, WANG L Y, ZHANG Z X, et al. Electric eel foraging optimization: a new bio-inspired optimizer for engineering applications[ J] . Expert Systems with Applications, 2024, 238: 122200. 
[22] 宋志强, 夏庆锋, 陈少博, 等. 基于改进球面向量粒 子群优化的 UAV 航迹规划[ J] . 电光与控制, 2023, 30(4) : 56-60. 
SONG Z Q, XIA Q F, CHEN S B, et al. UAV path planning with improved spherical vector based particle swarm optimization [ J ] . Electronics Optics & Control, 2023, 30(4) : 56-60. 
[23] 李丁, 夏露. 改进的粒子群优化算法在气动设计中的 应用[ J] . 航空学报, 2012, 33(10) : 1809-1816. 
LI D, XIA L. Application of improved particle swarm optimization algorithm to aerodynamic design[ J]. Acta Aeronautica et Astronautica Sinica, 2012, 33 ( 10): 1809 - 1816.

相似文献/References:

[1]刘广瑞,王庆海,姚冬艳.基于改进人工蜂群算法的多无人机协同任务规划[J].郑州大学学报(工学版),2018,39(03):51.[doi:10.13705/j.issn.1671-6833.2017.06.026]
 Liu Guangrui,Wang Qinghai,Yao Dongyan.Multi-UAV Cooperative Mission Planning Based on Improved Artificial Bee Colony Algorithm[J].Journal of Zhengzhou University (Engineering Science),2018,39(04):51.[doi:10.13705/j.issn.1671-6833.2017.06.026]
[2]闫怡汝,王寅.基于鸽群优化的复杂环境下无人机侦查航迹优化 [J].郑州大学学报(工学版),2019,40(04):3.[doi:10.13705/j.issn.1671-6833.2019.04.016]
 Yan Yiru,Wang Yin. undefined Pigeon-inspired Optimization Based Trajectory Planning Methodfor UAVs in a Complex Urban Environment [J].Journal of Zhengzhou University (Engineering Science),2019,40(04):3.[doi:10.13705/j.issn.1671-6833.2019.04.016]
[3]余松森,龙嘉濠,周 诺,等.基于相机运动轨迹的鲁棒无人机航拍稳像算法[J].郑州大学学报(工学版),2024,45(05):77.[doi:10.13705/j.issn.1671-6833.2024.02.004]
 YU Songsen,LONG Jiahao,ZHOU Nuo,et al.Robust Algorithm for Aerial Video Stabilization of UAV Based onCamera Motion Trajectory[J].Journal of Zhengzhou University (Engineering Science),2024,45(04):77.[doi:10.13705/j.issn.1671-6833.2024.02.004]
[4]郭歆莹,等.RIS辅助无人机通信系统波束赋形双重循环优化算法[J].郑州大学学报(工学版),2025,46(02):67.[doi:10.13705/j.issn.1671-6833.2025.02.005]
 GUO Xinying,,et al.Beamforming Dual-loop Optimization Algorithm for RIS-assisted UAV Communication Systems[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):67.[doi:10.13705/j.issn.1671-6833.2025.02.005]
[5]王 峰,马星宇,孟鹏帅,等.基于深度强化学习的无人机边缘计算任务卸载策略[J].郑州大学学报(工学版),2025,46(04):16.[doi:10.13705/j.issn.1671-6833.2025.01.018]
 WANG Feng,MA Xingyu,MENG Pengshuai,et al.Task Offloading Strategy of UAV Edge Computing Based on Deep Reinforcement Learning[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):16.[doi:10.13705/j.issn.1671-6833.2025.01.018]

更新日期/Last Update: 2025-07-12