[1]REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 11371149.[2]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779788.
[3]REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 6517-6525.
[4]REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2025-03-29]. https:∥arxiv.org/abs/1804.02767.
[5]BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2025-03-29]. https:∥arxiv. org/abs/2004.10934.
[6]WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for realtime object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 7464-7475.
[7]LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]∥Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37.
[8]SUN H B, SHEN Q C, KE H C, et al. Power transmission lines foreign object intrusion detection method for drone aerial images based on improved YOLOv8 network[J]. Drones, 2024, 8(8): 346.
[9]SHI J Y, BAI Y H, ZHOU J, et al. Multi-crop navigation line extraction based on improved YOLO-v8 and threshold-DBSCAN under complex agricultural environments[J]. Agriculture, 2024, 14(1): 45.
[10] XUE F C, CHENG Y N, SHEN Y F, et al. Urban flood inundation area detection using YOLOv8 model[J]. Water Resources Management, 2025,39: 5443-5460.
[11]邝先验, 程福军, 吴翠琴, 等. 基于改进YOLOv7-tiny的高效轻量遥感图像目标检测方法[J]. 电子测量与仪器学报, 2024,38(7): 22-33.
KUANG X Y, CHENG F J, WU C Q, et al. Efficient and lightweight target detection method for remote sensing images based on improved YOLOv7-tiny[J]. Journal of Electronic Measurement and Instrument, 2024,38(7): 22-33.
[12]魏明军, 王镆涵, 刘亚志, 等. 基于特征融合和混合注意力的小目标检测[J]. 郑州大学学报(工学版), 2024, 45(3): 72-79.
WEI M J, WANG M H, LIU Y Z, et al. Small object detection based on feature fusion and mixed attention[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(3): 72-79.
[13]鲁玲,李明良,熊威,等. 基于改进的YOLOv8变电设备红外图像检测[J].红外技术,2025,47(9):1135-1141.
LU L, LI M L, XIONG W, et al. Infrared image detection of substation equipment based on improved YOLOv8[J]. Infrared Technology,2025,47(9):1135-1141.
[14]李斌, 李亚霖, 朱新山, 等. 基于注意力机制与特征平衡的变电站多目标检测[J]. 电网技术, 2022, 46(6): 2122-2132.
LI B, LI Y L, ZHU X S, et al. Multi-target detection in substation scence based on attention mechanism and feature balance[J]. Power System Technology, 2022, 46(6): 2122-2132.
[15] PENG J, LIU Y B, MA Y, et al. Deep transfer learning for power substation recognition with Google Earth[C]∥2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). Piscataway: IEEE, 2018: 54-57.
[16] PÉREZ-HERNÁNDEZ F, RODRÍGUEZ-ORTEGA J, BENHAMMOU Y, et al. CI-dataset and DetDSCI methodology for detecting too small and too large critical infrastructures in satellite images: airports and electrical substations as case study[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 12149-12162.
[17] MESVARI M, SHAH-HOSSEINI R. Segmentation of electrical substations using deep convolutional neural network[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, 10(4): 495-500.
[18] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]∥ International Conference on Machine Learning. ICML: San Diego, 2021: 18-24.
[19] JIANG Y Q, TAN Z Y, WANG J Y, et al. GiraffeDet: a heavy-neck paradigm for object detection[EB/OL]. (2022-02-09)[2025-03-29]. https:∥arxiv. org/abs/2202.04256.
[20] XU X Z, JIANG Y Q, CHEN W H, et al. DAMO-YOLO: a report on real-time object detection design[EB/OL]. (2022-11-23)[2025-03-29]. https:∥arxiv.org/abs/2211.15444.
[21]WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2020: 390-391.
[22] LIU W Z, LU H, FU H T, et al. Learning to upsample by learning to sample[C]∥2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2023: 6004-6014.
[23] SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 1874-1883.
[24]WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]∥ Computer Vision-ECCV 2018. Cham: Springer, 2018: 3-19.
[25] XIA Z F, PAN X R, SONG S J, et al. Vision transformer with deformable attention[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2022: 4784-4793.
[26] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2021: 999210002.
[27] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask RCNN[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 29802988.
[28] LYU C Q, ZHANG W W, HUANG H A, et al. RTMDet: an empirical study of designing real-time object detectors[EB/OL]. (2022-12-14)[2025-03-29]. https:∥arxiv.org/abs/2212.07784.
[29] ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[EB/OL]. (2022-07-11)[2025-03-29]. https:∥arxiv.org/abs/2203.03605.