[1]周恩泽,黄道春,王 磊,等.基于改进YOLOv8s的输电线路山火检测[J].郑州大学学报(工学版),2025,46(05):114-121.[doi:10.13705/j.issn.1671-6833.2025.05.017]
 ZHOU Enze,HUANG Daochun,WANG Lei,et al.Wildfire Detection for Transmission Corridor Based on Improved YOLOv8s[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):114-121.[doi:10.13705/j.issn.1671-6833.2025.05.017]
点击复制

基于改进YOLOv8s的输电线路山火检测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年05期
页码:
114-121
栏目:
出版日期:
2025-08-10

文章信息/Info

Title:
Wildfire Detection for Transmission Corridor Based on Improved YOLOv8s
文章编号:
1671-6833(2025)05-0114-08
作者:
周恩泽1 黄道春2 王 磊1 彭添浩2 刘淑琴1 汪 皓1 陈 超1
1.广东电网有限责任公司电力科学研究院,广东 广州 510080;2.武汉大学 电气与自动化学院,湖北 武汉 430072
Author(s):
ZHOU Enze1 HUANG Daochun2 WANG Lei1 PENG Tianhao2 LIU Shuqin1 WANG Hao1 CHEN Chao1
1.Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China; 2.School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
关键词:
输电线路 山火烟雾 目标检测 YOLOv8s ODConv DyHead WIoU
Keywords:
transmission corridor wildfire smoke target detection YOLOv8s ODConv DyHead WIoU
分类号:
TP391.4 TM75
DOI:
10.13705/j.issn.1671-6833.2025.05.017
文献标志码:
A
摘要:
针对输电线路走廊复杂背景场景下传统预警方法山火检测效果差、速度慢,图像识别误检、漏检率较高等问题,提出了一种基于改进YOLOv8s的输电线路山火检测方法。首先,通过网络收集并对现有数据集筛选,得到以野外荒地为背景的山火图像数据集,更加贴合目标背景。其次,引入ODConv模块,对基线模型的Backbone和Neck部分使用C2f_OD模块替换原C2f模块进行特征提取,提升模型对火焰烟雾的检测性能;再更换Head部分为DyHead模块,融合尺度、空间和任务3种注意力感知模块,进一步提高检测精度;并使用WIoU损失函数,将检测框回归聚焦于普通质量的预测框,提升模型对复杂背景的泛化性能。最后,设计了3组消融实验和1组对比实验。实验结果表明:所提算法与原YOLOv8s模型相比,在自建山火数据集上mAP@0.5提高了5.6百分点,P提升了4.51百分点,R提升了5.41百分点,帧率为34.9帧/s,满足输电线路山火精准检测的要求。
Abstract:
In the complex background of transmission line corridors, traditional early warning methods for detecting wildfires showed poor performance, slow detection speeds, and high rates of false positives and missed detections in image recognition. In this study a wildfire detection method was introduced for transmission corridor based on an improved YOLOv8s model. Firstly, through network collection and screening of existing datasets, a wildfire image dataset featuring wilderness backgrounds was obtained, providing a more suitable match for the target background. Secondly, the ODConv module was introduced, replacing the original C2f module with the C2f_OD module for feature extraction in the Backbone and Neck sections of the baseline model, thereby enhancing the model′s detection performance for flames and smoke. Secondly, the Head section was replaced with the DyHead module, integrating three attention mechanisms scale, spatial, and task to further improve detection accuracy. The WIoU loss function was employed to focus detection frame regression on prediction boxes of ordinary quality, enhancing the model′s generalization performance in complex backgrounds. Finally, three ablation experiments and one comparative experiment were designed. The results demonstrated that, compared to the original YOLOv8s model, the proposed algorithm achieved 5.6% increase in mAP@0.5, 4.51% increase in P, 5.41% increase in R, and a detection speed of 34.9 frames per second, meeting the requirements for accurate wildfire detection along transmission corridor.

参考文献/References:

[1]黄道春, 黎鹏, 阮江军, 等. 山火引发输电线路间隙放电机理与击穿特性综述[J]. 高电压技术, 2015, 41 (2): 622-632. 

HUANG D C, LI P, RUAN J J, et al. Review on discharge mechanism and breakdown characteristics of transmission line gap under forest fire condition[J]. High Voltage Engineering, 2015, 41(2): 622-632. 
[2]胡毅, 刘凯, 吴田, 等. 输电线路运行安全影响因素分析及防治措施[J]. 高电压技术, 2014, 40(11): 3491-3499. 
HU Y, LIU K, WU T, et al. Analysis of influential factors on operation safety of transmission line and countermeasures[J]. High Voltage Engineering, 2014, 40 (11): 3491-3499. 
[3]陆佳政, 周特军, 吴传平, 等. 某省级电网220 kV及以上输电线路故障统计与分析[J]. 高电压技术, 2016, 42(1): 200-207. 
LU J Z, ZHOU T J, WU C P, et al. Fault statistics and analysis of 220 kV and above power transmission line in province-level power grid[J]. High Voltage Engineering, 2016, 42(1): 200-207. 
[4]张敏, 戴栋, 谢从珍, 等. 基于激光雷达技术的输电线路山火监测方法研究[J]. 电测与仪表, 2015, 52 (15): 101-107. 
ZHANG M, DAI D, XIE C Z, et al. Study on monitoring wildfire around power transmission line based on lidar [J]. Electrical Measurement & Instrumentation, 2015, 52(15): 101-107. 
[5]叶立平, 陈锡阳, 何子兰, 等. 山火预警技术在输电线路的应用现状[J]. 电力系统保护与控制, 2014, 42 (6): 145-153. 
YE L P, CHEN X Y, HE Z L, et al. Present situation of forest fire early warning technology used for transmission line[J]. Power System Protection and Control, 2014, 42 (6): 145-153. 
[6]陈钦柱, 赵海龙, 余阳. 基于无人机的电力传输线山火灾害监测技术研究[J]. 自动化与仪器仪表, 2019 (4): 242-245, 250. 
CHEN Q Z, ZHAO H L, YU Y. Research on monitoring technology of mountain fire disaster based on UAV′s power transmission line[J]. Automation & Instrumentation, 2019(4): 242-245, 250. 
[7]杨传凯, 吴兵, 孔敏儒, 等. 基于输电巡检图像的山火智能识别方法[J]. 电力信息与通信技术, 2021, 19 (1): 66-72. 
YANG C K, WU B, KONG M R, et al. Intelligent identification method of mountain fire based on the inspection image of power transmission[J]. Electric Power Information and Communication Technology, 2021, 19(1): 66-72. 
[8]REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 
[9]REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2020-04-23)[2024-12-26]. https:∥doi.org/10.48550/arXiv.2004.10934. 
[10] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2024-12-26]. https:∥doi. org/10. 48550/arXiv.2004.10934. 
[11] LI P, ZHAO W D. Image fire detection algorithms based on convolutional neural networks[J]. Case Studies in Thermal Engineering, 2020, 19: 100625. 
[12]张坚鑫, 郭四稳, 张国兰, 等. 基于多尺度特征融合的火灾检测模型[J]. 郑州大学学报(工学版), 2021, 42(5): 13-18. 
ZHANG J X, GUO S W, ZHANG G L, et al. Fire detection model based on multi-scale feature fusion[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(5): 13-18. 
[13]卢鹏, 赵亚琴, 陈越, 等. 复杂背景环境下基于SSDMobileNet深度学习模型的火焰图像识别研究[J]. 火灾科学, 2020, 29(3): 142-149. 
LU P, ZHAO Y Q, CHEN Y, et al. Flame recognition in complex environment based on deep learning model SSDMobileNet[J]. Fire Safety Science, 2020, 29(3): 142-149. 
[14]王一旭, 肖小玲, 王鹏飞, 等. 改进YOLOv5s的小目标烟雾火焰检测算法[J]. 计算机工程与应用, 2023, 59(1): 72-81. 
WANG Y X, XIAO X L, WANG P F, et al. Improved YOLOv5s small target smoke and fire detection algorithm [J]. Computer Engineering and Applications, 2023, 59 (1): 72-81. 
[15] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[EB/OL].(2022-09-16)[2024-12-26]. https:∥doi.org/10.48550/arXiv.2209.07947. 
[16] DAI X Y,CHEN Y P,XIAO B,et al.Dynamic head: unifying object detection heads with attentions[EB/OL]. (2021-06-15) [2024-12-26]. https:∥doi. org/ 10.48550/arXiv.2106.08322. 
[17] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. (2023-01-24)[2024-12-26]. https:∥arxiv.org/abs/2301.10051. 
[18] Ultralytics. YOLOv5[EB/OL]. (2020-06-26) [202412-26]. https:∥g ithub.com/ultralytics/YOLOv5. 
[19]WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-theart for real-time object detectors[C]∥Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.Piscataway:IEEE, 2023: 7464-7475. 
[20] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.

更新日期/Last Update: 2025-09-19