[1]FEIGIN V L, BRAININ M, NORRVING B, et al. World stroke organization (WSO): global stroke fact sheet 2022 [J]. International Journal of Stroke, 2022, 17(1): 18-29. [2]MARKUS H S, LEUNG T. Stroke in China[J]. International Journal of Stroke, SAGE Publications, 2023, 18 (3): 256-258.
[3]LEE S H, KIM S S, LEE B H. Action observation training and brain-computer interface controlled functional electrical stimulation enhance upper extremity performance and cortical activation in patients with stroke: a randomized controlled trial[J]. Physiotherapy Theory and Practice, 2022, 38(9): 1126-1134.
[4]YAO M H, REN Y, JIA Y L, et al. Projected burden of stroke in China through 2050[J]. Chinese Medical Journal, 2023, 136(13): 1598-1605.
[5]DOUCET B M, LAM A, GRIFFIN L. Neuromuscular electrical stimulation for skeletal muscle function[J]. Yale Journal of Biology and Medicine, 2012, 85(2): 201-215.
[6]SHEFFLER L R, CHAE J. Neuromuscular electrical stimulation in neurorehabilitation[J]. Muscle & Nerve, 2007, 35(5): 562-590.
[7]ALON G, LEVITT A F, MCCARTHY P A. Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study[J]. Neurorehabilitation and Neural Repair, 2007, 21(3): 207-215.
[8]DOWNEY R J, BELLMAN M J, KAWAI H, et al. Comparing the induced muscle fatigue between asynchronous and synchronous electrical stimulation in able-bodied and spinal cord injured populations[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23 (6): 964-972.
[9]TRIOLO R J, LIU M Q, KOBETIC R, et al. Selectivity of intramuscular stimulating electrodes in the lower limbs [J]. Journal of Rehabilitation Research and Development, 2001, 38(5): 533-544.
[10] GOBBO M, GAFFURINI P, BISSOLOTTI L, et al. Transcutaneous neuromuscular electrical stimulation: influence of electrode positioning and stimulus amplitude settings on muscle response[J]. European Journal of Applied Physiology, 2011, 111(10): 2451-2459.
[11] IBITOYE M O, HAMZAID N A, HASNAN N, et al. Strategies for rapid muscle fatigue reduction during FES exercise in individuals with spinal cord injury: a systematic review[J]. PLoS One, 2016, 11(2): e0149024.
[12] GOBBO M, MAFFIULETTI N A, ORIZIO C, et al. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use[EB/OL]. (2014-02-15)[2024-09-10]. https:∥doi. org/10. 1186/1743-0003-11-17.
[13] MOE J H, POST H W. Functional electrical stimulation for ambulation in hemiplegia[J]. The Journal-lancet, 1962, 82: 285-288.
[14] KRALJ A, BAJD T, TURK R. Enhancement of gait restoration in spinal injured patients by functional electrical stimulation[J]. Clinical Orthopaedics and Related Research, 1988(233): 34-43.
[15] PECKHAM P H, KNUTSON J S. Functional electrical stimulation for neuromuscular applications[J]. Annual Review of Biomedical Engineering, 2005, 7: 327-360.
[16] ALLEN B C, STUBBS K J, DIXON W E. Adaptive trajectory tracking during motorized and FES-induced biceps curls via integral concurrent learning[EB/OL]. (202010-05)[2024-09-10]. https:∥doi. org/10. 1115/ DSCC2020-3125.
[17] CAMILO E M, GUTIÉRREZ J A M, RAMÍREZ O P, et al. A functional electrical stimulation controller for contralateral hand movements based on EMG signals[C]∥ The 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Piscataway: IEEE, 2020: 1-6.
[18] ZHANG J M, ZHANG L, GUO S C, et al. Iterative learning control of functional electrical stimulation based on joint muscle model[C]∥Proceedings of the 3rd International Conference on Computational Intelligence and Intelligent Systems. New York: ACM, 2020: 119-123.
[19] ARROFIQI F, WATANABE T, ARIFIN A. A computer simulation study on movement control by functional electrical stimulation using optimal control technique with simplified parameter estimation[J]. IEICE Transactions on Information and Systems, 2023, E106.D(5): 1059-1068.
[20] LUM P S, BURGAR C G, SHOR P C. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 12 (2): 186-194.
[21] YU B B, ZHANG X T, CHENG Y H, et al. The effects of the biceps brachii and brachioradialis on elbow flexor muscle strength and spasticity in stroke patients[J]. Neural Plasticity, 2022, 2022(1): 1295908.
[22] CHADWICK E K, BLANA D, VAN DEN BOGERT A J T, et al. A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements[J]. IEEE Transactions on Bio-Medical Engineering, 2009, 56(4): 941-948.
[23] ZHANG D G, GUAN T H, WIDJAJA F, et al. Functional electrical stimulation in rehabilitation engineering: a survey[C]∥Proceedings of the 1st International Convention on Rehabilitation Engineering & Assistive Technology: in Conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting. NewYork: ACM, 2007: 221-226.
[24] FREEMAN C T. Upper limb electrical stimulation using input-output linearization and iterative learning control [J]. IEEE Transactions on Control Systems Technology, 2015, 23(4): 1546-1554.
[25]韩京清. 从PID技术到“自抗扰控制” 技术[J]. 控制工程, 2002, 9(3): 13-18.
HAN J Q. From PID technique to active disturbances rejection control technique[J]. Basic Automation, 2002, 9 (3): 13-18.
[26] CIFREK M, MEDVED V, TONKOVIC’ S, et al. Surface EMG based muscle fatigue evaluation in biomechanics [J]. Clinical Biomechanics, 2009, 24(4): 327-340.