[1]霍本岩,王亚楠,张 赞,等.基于ADRC的多电极协同上肢康复运动控制方法[J].郑州大学学报(工学版),2025,46(02):1-10.[doi:10.13705/j.issn.1671-6833.2025.02.017]
 HUO Benyan,WANG Yanan,ZHANG Zan,et al.Multi-electrode Coordinated Upper Limb Rehabilitation Motion Control Method Based on ADRC[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):1-10.[doi:10.13705/j.issn.1671-6833.2025.02.017]
点击复制

基于ADRC的多电极协同上肢康复运动控制方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年02期
页码:
1-10
栏目:
出版日期:
2025-03-10

文章信息/Info

Title:
Multi-electrode Coordinated Upper Limb Rehabilitation Motion Control Method Based on ADRC
文章编号:
1671-6833(2025)02-0001-10
作者:
霍本岩1 王亚楠1 张 赞1 董安琴2 刘艳红1
1.郑州大学 电气与信息工程学院,河南 郑州 450001;2.郑州大学 第五附属医院,河南 郑州 450000
Author(s):
HUO Benyan1 WANG Yanan1 ZHANG Zan1 DONG Anqin2 LIU Yanhong1
1.School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.The Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
关键词:
功能性电刺激 多电极切换策略 上肢康复系统 电极阵列 自抗扰控制
Keywords:
functional electrical stimulation multi-electrode switching strategy upper limb rehabilitation system electrode array active disturbance rejection control
分类号:
TP273
DOI:
10.13705/j.issn.1671-6833.2025.02.017
文献标志码:
A
摘要:
功能性电刺激(FES)是重要的卒中致残康复治疗方法,而现有的功能性电刺激设备多使用单对表面电极对肌肉施加刺激,难以在肢体运动过程中精确定位最佳刺激位置,同时,受内外干扰的影响,康复运动控制精度有待提高。为此,提出了一种基于自抗扰控制(ADRC)的多电极协同控制方法。首先,设计了一套用于上肢康复的多电极功能性电刺激系统;其次,通过分析上肢的动力学模型确定电极切换策略,在角度跟踪过程中根据角度区间动态调整电极组合,实现对最佳刺激位置的跟踪;再次,引入ADRC作为控制器实时估计和补偿系统的扰动;最后,招募健康受试者,开展仿真和实验验证。结果表明:所提出的控制方法实现了对上肢运动的精确控制,与固定电极策略的控制方法相比,平均跟踪误差均值降低了约50.41%,均方差降低了约43.30%。此外,受试者肌电信号分析结果表明:采用电极切换策略的肌电信号与固定电极策略相比,振幅平均绝对值MAV和中值频率MF分别减少了约40.21%、 17.97%,肌肉疲劳得到了一定的缓解。
Abstract:
Functional electrical stimulation (FES) was an important rehabilitation treatment for stroke-induced disabilities. However, existing FES devices primarily used single-pair surface electrodes to stimulate muscles, making it difficult to precisely locate the optimal stimulation position during limb movements. Additionally, the accuracy of rehabilitation movement control could be affected by internal and external disturbances. To achieve precise control of upper limb movements. A multi-electrode coordinated control method based on active disturbance rejection control (ADRC) was proposed in this study. First, a multi-electrode functional electrical stimulation system for upper limb rehabilitation was designed. Next, an electrode switching strategy was determined by analyzing the dynamics model of the upper limb, dynamically adjusting the electrode combination according to the angle range during angle tracking to track the optimal stimulation position. Subsequently, ADRC was introduced as the controller to estimate and compensate for system disturbances in real-time. Finally, healthy subjects were recruited for simulations and experimental validation. The results showed that the proposed control method achieved precise control of upper limb movements. Compared with the fixed electrode strategy, the average tracking error was reduced by approximately 50.41%, and the root mean square error was reduced by approximately 43.30%. Furthermore, analysis of the subjects′ electromyographic signals indicated that the electrode switching strategy reduced mean absolute value MAV and median frequency MF by approximately 44.21% and 17.97%, respectively, while mitigating muscle fatigue.

参考文献/References:

[1]FEIGIN V L, BRAININ M, NORRVING B, et al. World stroke organization (WSO): global stroke fact sheet 2022 [J]. International Journal of Stroke, 2022, 17(1): 18-29. 

[2]MARKUS H S, LEUNG T. Stroke in China[J]. International Journal of Stroke, SAGE Publications, 2023, 18 (3): 256-258. 
[3]LEE S H, KIM S S, LEE B H. Action observation training and brain-computer interface controlled functional electrical stimulation enhance upper extremity performance and cortical activation in patients with stroke: a randomized controlled trial[J]. Physiotherapy Theory and Practice, 2022, 38(9): 1126-1134. 
[4]YAO M H, REN Y, JIA Y L, et al. Projected burden of stroke in China through 2050[J]. Chinese Medical Journal, 2023, 136(13): 1598-1605. 
[5]DOUCET B M, LAM A, GRIFFIN L. Neuromuscular electrical stimulation for skeletal muscle function[J]. Yale Journal of Biology and Medicine, 2012, 85(2): 201-215.
[6]SHEFFLER L R, CHAE J. Neuromuscular electrical stimulation in neurorehabilitation[J]. Muscle & Nerve, 2007, 35(5): 562-590. 
[7]ALON G, LEVITT A F, MCCARTHY P A. Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study[J]. Neurorehabilitation and Neural Repair, 2007, 21(3): 207-215. 
[8]DOWNEY R J, BELLMAN M J, KAWAI H, et al. Comparing the induced muscle fatigue between asynchronous and synchronous electrical stimulation in able-bodied and spinal cord injured populations[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23 (6): 964-972. 
[9]TRIOLO R J, LIU M Q, KOBETIC R, et al. Selectivity of intramuscular stimulating electrodes in the lower limbs [J]. Journal of Rehabilitation Research and Development, 2001, 38(5): 533-544. 
[10] GOBBO M, GAFFURINI P, BISSOLOTTI L, et al. Transcutaneous neuromuscular electrical stimulation: influence of electrode positioning and stimulus amplitude settings on muscle response[J]. European Journal of Applied Physiology, 2011, 111(10): 2451-2459. 
[11] IBITOYE M O, HAMZAID N A, HASNAN N, et al. Strategies for rapid muscle fatigue reduction during FES exercise in individuals with spinal cord injury: a systematic review[J]. PLoS One, 2016, 11(2): e0149024. 
[12] GOBBO M, MAFFIULETTI N A, ORIZIO C, et al. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use[EB/OL]. (2014-02-15)[2024-09-10]. https:∥doi. org/10. 1186/1743-0003-11-17.
[13] MOE J H, POST H W. Functional electrical stimulation for ambulation in hemiplegia[J]. The Journal-lancet, 1962, 82: 285-288. 
[14] KRALJ A, BAJD T, TURK R. Enhancement of gait restoration in spinal injured patients by functional electrical stimulation[J]. Clinical Orthopaedics and Related Research, 1988(233): 34-43. 
[15] PECKHAM P H, KNUTSON J S. Functional electrical stimulation for neuromuscular applications[J]. Annual Review of Biomedical Engineering, 2005, 7: 327-360. 
[16] ALLEN B C, STUBBS K J, DIXON W E. Adaptive trajectory tracking during motorized and FES-induced biceps curls via integral concurrent learning[EB/OL]. (202010-05)[2024-09-10]. https:∥doi. org/10. 1115/ DSCC2020-3125.
[17] CAMILO E M, GUTIÉRREZ J A M, RAMÍREZ O P, et al. A functional electrical stimulation controller for contralateral hand movements based on EMG signals[C]∥ The 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Piscataway: IEEE, 2020: 1-6. 
[18] ZHANG J M, ZHANG L, GUO S C, et al. Iterative learning control of functional electrical stimulation based on joint muscle model[C]∥Proceedings of the 3rd International Conference on Computational Intelligence and Intelligent Systems. New York: ACM, 2020: 119-123. 
[19] ARROFIQI F, WATANABE T, ARIFIN A. A computer simulation study on movement control by functional electrical stimulation using optimal control technique with simplified parameter estimation[J]. IEICE Transactions on Information and Systems, 2023, E106.D(5): 1059-1068. 
[20] LUM P S, BURGAR C G, SHOR P C. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 12 (2): 186-194. 
[21] YU B B, ZHANG X T, CHENG Y H, et al. The effects of the biceps brachii and brachioradialis on elbow flexor muscle strength and spasticity in stroke patients[J]. Neural Plasticity, 2022, 2022(1): 1295908. 
[22] CHADWICK E K, BLANA D, VAN DEN BOGERT A J T, et al. A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements[J]. IEEE Transactions on Bio-Medical Engineering, 2009, 56(4): 941-948. 
[23] ZHANG D G, GUAN T H, WIDJAJA F, et al. Functional electrical stimulation in rehabilitation engineering: a survey[C]∥Proceedings of the 1st International Convention on Rehabilitation Engineering & Assistive Technology: in Conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting. NewYork: ACM, 2007: 221-226. 
[24] FREEMAN C T. Upper limb electrical stimulation using input-output linearization and iterative learning control [J]. IEEE Transactions on Control Systems Technology, 2015, 23(4): 1546-1554. 
[25]韩京清. 从PID技术到“自抗扰控制” 技术[J]. 控制工程, 2002, 9(3): 13-18. 
HAN J Q. From PID technique to active disturbances rejection control technique[J]. Basic Automation, 2002, 9 (3): 13-18. 
[26] CIFREK M, MEDVED V, TONKOVIC’ S, et al. Surface EMG based muscle fatigue evaluation in biomechanics [J]. Clinical Biomechanics, 2009, 24(4): 327-340.

更新日期/Last Update: 2025-03-13