[1]HOWLAND M F, LELE S K, DABIRI J O. Wind farm power optimization through wake steering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14495-14500. [2]BENSASON D, SIMLEY E, ROBERTS O, et al. Evaluation of the potential for wake steering for U. S. landbased wind power plants[J]. Journal of Renewable & Sustainable Energy. 2021, 13(3): 033303.
[3]宗豪华, 孙恩博. 水平轴风力机主动尾流控制综述[J]. 空气动力学学报, 2022, 40(4): 51-68.
ZONG H H, SUN E B. Reivew of active wake control for horizontal-axis wind turbines[J]. Acta Aerodynamica Sinica, 2022, 40(4): 51-68.
[4]邓智文, 郭苏, 许昌, 等. 海上风电场功率提升和疲劳平衡综合优化控制[J]. 太阳能学报, 2021, 42 (1): 180-186.
DENG Z W, GUO S, XU C, et al. Comprehensive optimization control of power boost and fatigue balance for offshore wind farms[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 180-186.
[5]胡阳, 张冲, 房方, 等. 基于主动尾流控制的风电机群协同优化调度[J]. 动力工程学报, 2024, 44(4): 566-574.
HU Y, ZHANG C, FANG F, et al. Cooperative and optimal scheduling of wind turbine groups based on active wake control[J]. Journal of Chinese Society of Power Engineering, 2024, 44(4): 566-574.
[6]刘一格, 赵振宙, 马远卓, 等. 基于鲸鱼优化算法的串列风力机主动尾流控制策略[J]. 中国电机工程学报, 2024, 44(9): 3702-3710.
LIU Y G, ZHAO Z Z, MA Y Z, et al. Active wake control strategy of tandem wind turbines based on whale optimization algorithm[J]. Proceedings of the CSEE, 2024, 44(9): 3702-3710.
[7]ZHANG Z Y, HUANG P, BITSUAMLAK G, et al. Analytical solutions for yawed wind-turbine wakes with application to wind-farm power optimization by active yaw control[J]. Ocean Engineering, 2024, 304: 117691.
[8]CAI W, HU Y, FANG F, et al. Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines[J]. Applied Energy, 2023, 339: 121000.
[9]GUO N Z, ZHANG M M, LI B. A data-driven analytical model for wind turbine wakes using machine learning method[J]. Energy Conversion and Management, 2022, 252: 115130.
[10] SUN H Y, QIU C Y, LU L, et al. Wind turbine power modelling and optimization using artificial neural network with wind field experimental data[J]. Applied Energy, 2020, 280: 115880.
[11]焦小敏, 耿华, 马少康, 等. 基于数据驱动的多风电机组协同控制方法[J]. 电源学报, 2020, 18(2): 2431.
JIAO X M, GENG H, MA S K, et al. Data-driven cooperative control method for multiple wind turbines[J]. Journal of Power Supply, 2020, 18(2): 24-31.
[12] RAK B P, SANTOS PEREIRA R B. Impact of the wake deficit model on wind farm yield: a study of yaw-based control optimization[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220: 104827.
[13] SONG D R, FAN X Y, YANG J, et al. Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method[J]. Applied Energy, 2018, 224: 267-279.
[14] PARK J, LAW K H. Bayesian ascent: a data-driven optimization scheme for real-time control with application to wind farm power maximization[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1655-1668.
[15] VALI M, PETROVIC ′ V, PAO L Y, et al. Model predictive active power control for optimal structural load equalization in waked wind farms[J]. IEEE Transactions on Control Systems Technology, 2022, 30(1): 30-44.
[16] YIN X X, ZHANG W C, JIANG Z S, et al. Data-drivenmulti-objective predictive control of offshore wind farm based on evolutionary optimization[J]. Renewable Energy, 2020, 160: 974-986.
[17] HANSEN M O L. Aerodynamics of wind turbines[M]. 3rd ed. London: Routledge, 2015.
[18] SHAKOOR R, HASSAN M Y, RAHEEM A, et al. Wake effect modeling: a review of wind farm layout optimization using Jensen′s model[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1048-1059.
[19] BASTANKHAH M, PORTÉ-AGEL F. Experimental and theoretical study of wind turbine wakes in yawed conditions [J]. Journal of Fluid Mechanics, 2016, 806: 506-541.
[20] PARK J, LAW K H. A data-driven, cooperative wind farm control to maximize the total power production[J]. Applied Energy, 2016, 165: 151-165.
[21] ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106-11115.
[22] NASH R, NOURI R, VASEL-BE-HAGH A. Wind turbine wake control strategies: a review and concept proposal[J]. Energy Conversion and Management, 2021, 245: 114581.
[23]陈婧华, 张琳娟, 卢丹, 等. 基于改进粒子群优化算法的分布式电源集群划分方法[J]. 郑州大学学报(工学版), 2023, 44(5): 77-85.
CHEN J H, ZHANG L J, LU D, et al. Cluster partition method of distributed power supply based on improved particle swarm optimization algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44 (5): 77-85.
[24] GEBRAAD P M O, TEEUWISSE F W, VAN WINGERDEN J W, et al. Wind plant power optimization through yaw control using a parametric model for wake effects: a CFD simulation study[J]. Wind Energy, 2016, 19(1): 95-114.
[25] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[EB/OL]. (2009-02-01)[202407-03]. https:∥digital. library. unt. edu/ark:167531/ metadc894033/ .