[1]朱晓东,任春晓,刘晓兰,等.基于适应度地形分析的优化算法调度方法[J].郑州大学学报(工学版),2025,46(06):32-39.[doi:10.13705/j.issn.1671-6833.2025.03.017]
 ZHU Xiaodong,REN Chunxiao,LIU Xiaolan,et al.Optimization Algorithm Scheduling Method Based on Fitness Landscape Analysis[J].Journal of Zhengzhou University (Engineering Science),2025,46(06):32-39.[doi:10.13705/j.issn.1671-6833.2025.03.017]
点击复制

基于适应度地形分析的优化算法调度方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年06期
页码:
32-39
栏目:
出版日期:
2025-10-25

文章信息/Info

Title:
Optimization Algorithm Scheduling Method Based on Fitness Landscape Analysis
文章编号:
1671-6833(2025)06-0032-08
作者:
朱晓东 任春晓 刘晓兰 陈 科 余春明
郑州大学 电气与信息工程学院,河南 郑州 450001
Author(s):
ZHU Xiaodong REN Chunxiao LIU Xiaolan CHEN Ke YU Chunming
School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
优化算法调度 适应度地形 特征提取 局部峰值点 哈里斯鹰优化算法 差分进化算法
Keywords:
optimization algorithm scheduling fitness landscape analysis feature extraction local peak points harris hawks optimization algorithm differential evolution algorithm
分类号:
TP391TP301.4TP18
DOI:
10.13705/j.issn.1671-6833.2025.03.017
文献标志码:
A
摘要:
由于不同的优化问题具有不同的适应度地形,而一种优化算法通常只在某一种适应度地形上有更好的效果,因此,提出了一种基于适应度地形分析的优化算法调度方法(FL-AMAS)。首先,通过提取优化目标函数的局部峰簇数特征来描述优化问题的地形特征,根据地形特征选择相应具有优势的算法,利用对算法的调度发挥不同算法的最大优势;其次,根据优化问题对探索性与开发性的平衡要求,选择了具有高开发能力的哈里斯鹰优化算法(HHO)和具有高探索能力的差分进化算法(DE)作为调度使用的算法,根据不同的适应度地形特征来选择更适合的算法。实验结果表明:在基准测试集上,相较于单独使用HHO,FL-AMAS在收敛性能上提升了75%;与DE算法相比,FL-AMAS收敛性能提升了40%。将FL-AMAS与6种先进算法进行比较,在75%的基准测试集上,FL-AMAS的收敛精度均优于这些算法。通过调度其他类型优化算法的结果进行对比,也验证了所提调度方法的有效性和扩展性。
Abstract:
Optimization algorithms often perform optimally on specific types of fitness terrains due to the varying nature of optimization problems. To address this limitation, in this study an optimization algorithm scheduling method grounded in fitness terrain analysis was introduced. This method characterizes the terrain features of an optimization problem by extracting the local peak cluster number features of the optimization objective function. Based on these terrain features, the method selected the most suitable algorithm to maximize the advantages of different algorithms through effective scheduling. In particular, this study considered the balance between exploration and exploitation in optimization problems by selecting the harris hawks optimization algorithm (HHO), known for its high development capability, and the differential evolution algorithm (DE), recognized for its strong exploration ability, as the scheduling algorithms. The choice of algorithm was tailored to the specific adaptability characteristics of the terrain. Experimental results show that the convergence performance of FL-AMAS was improved by 75% compared with that of HHO alone, and by 40% compared with that of DE algorithm. Further, FL-AMAS was compared with six advanced algorithms, and FL-AMAS outperformed these algorithms in convergence accuracy on 75% of the benchmark set. The effectiveness and scalability of the proposed scheduling method were further validated through comparisons with other types of scheduling optimization algorithms.

参考文献/References:

[1]梁静, 刘睿, 瞿博阳, 等. 进化算法在大规模优化问题中的应用综述[J]. 郑州大学学报(工学版), 2018, 39(3): 15-21. 

LIANG J, LIU R, QU B Y, et al. A survey of evolutionary algorithms for large scale optimization problem[J]. Journal of Zhengzhou University (Engineering Science), 2018, 39(3): 15-21. 
[2]LU P, YE L, ZHAO Y N, et al. Review of meta-heuristic algorithms for wind power prediction: methodologies, applications and challenges[J]. Applied Energy, 2021, 301: 117446. 
[3]MALAN K M. A survey of advances in landscape analysis for optimisation[J]. Algorithms, 2021, 14(2): 40. 
[4]LIANG J, LI K, YU K J, et al. A novel differential evolution algorithm based on local fitness landscape information for optimization problems[J]. IEICE Transactions on Information and Systems, 2023, 106(5): 601-616. 
[5]ZHENG L M, LUO S Q. Adaptive differential evolution algorithm based on fitness landscape characteristic[J]. Mathematics, 2022, 10(9): 1511. 
[6]LI Y X, YU K J, LIANG J, et al. A landscape-aware particle swarm optimization for parameter identification of photovoltaic models[J]. Applied Soft Computing, 2022, 131: 109793. 
[7]TANG K, LIU S C, YANG P, et al. Few-shots parallel algorithm portfolio construction via co-evolution[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(3): 595-607. 
[8]YUEN S Y, CHOW C K, ZHANG X, et al. Which algorithm should I choose: an evolutionary algorithm portfolio approach[J]. Applied Soft Computing, 2016, 40: 654-673. 
[9]丁青锋, 尹晓宇. 差分进化算法综述[J]. 智能系统学报, 2017, 12(4): 431-442. 
DING Q F, YIN X Y. Research survey of differential evolution algorithms[J]. CAAI Transactions on Intelligent Systems, 2017, 12(4): 431-442. 
[10] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. 
[11]汪慎文, 丁立新, 张文生, 等. 差分进化算法研究进展[J]. 武汉大学学报(理学版), 2014, 60(4): 283-292. 
WANG S W, DING L X, ZHANG W S, et al. Survey of differential evolution[J]. Journal of Wuhan University (Natural Science Edition), 2014, 60(4): 283-292. 
[12]WRIGHT S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution[J]. Proceedings of the Sixth International Congress on Genetics, 1932, 1: 356-366. 
[13]王艳丽, 梁静, 薛冰, 等. 基于进化计算的特征选择方法研究概述[J]. 郑州大学学报(工学版), 2020, 41(1): 49-57. 
WANG Y L, LIANG J, XUE B, et al. Research on evolutionary computation for feature selection[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41 (1): 49-57. 
[14]李亚欣, 梁静, 岳彩通, 等. 基于适应度地形分析的进化计算研究综述[J]. 陕西师范大学学报(自然科学版), 2021, 49(5): 39-53. 
LI Y X, LIANG J, YUE C T, et al. A survey of evolutionary computing based on fitness landscape analysis [J]. Journal of Shaanxi Normal University (Natural Science Edition), 2021, 49(5): 39-53. 
[15] LI Y X, LIANG J, YU K J, et al. Keenness for characterizing continuous optimization problems and predicting differential evolution algorithm performance[J]. Complex & Intelligent Systems, 2023, 9(5): 5251-5266. 
[16]廖雄鹰, 李俊, 罗阳坤, 基于自适应变异算子的差分进化算法[J]. 计算机工程与应用, 2018, 54 (06): 128-134. 
LIAO X Y, LI J, LUO Y K, Differential evolution algorithm based on adaptive mutation operator[J]. Computer Engineering and Applications, 2018, 54 (6): 128-134. 
[17] LANG R D, ENGELBRECHT A P. Decision space coverage of random walks[C]∥2020 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE, 2020: 1-8. 
[18] ZUO Y Y, HU Z Q, YUAN S J, et al. Identification of convective and stratiform clouds based on the improved DBSCAN clustering algorithm[J]. Advances in Atmospheric Sciences, 2022, 39(12): 2203-2212. 
[19] MEIDANI K, MIRJALILI S, BARATI FARIMANI A. Online metaheuristic algorithm selection[J]. Expert Systems with Applications, 2022, 201: 117058. 
[20] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. 
[21] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. 
[22] MIRJALILI S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm[J]. KnowledgeBased Systems, 2015, 89: 228-249. 
[23] MIRJALILI S, MIRJALILI S M, HATAMLOU A. MultiVerse Optimizer: a nature-inspired algorithm for global optimization[J]. Neural Computing and Applications, 2016, 27(2): 495-513. 
[24] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191. 
[25] MIRJALILI S. SCA: a Sine Cosine Algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. 
[26] ALCALÁ-FDEZ J, SÁNCHEZ L, GARCÍA S, et al. KEEL: a software tool to assess evolutionary algorithms for data mining problems[J]. Soft Computing, 2009, 13 (3): 307-318.

更新日期/Last Update: 2025-10-21