[1]李二超,吴 煜.基于自适应采样策略的模糊分类代理辅助进化算法[J].郑州大学学报(工学版),2025,46(02):51-59.[doi:10.13705/j.issn.1671-6833.2025.02.010]
 LI Erchao,WU Yu.Fuzzy Classification Surrogate-assisted Evolutionary Algorithm Based on Adaptive Sampling Strategy[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):51-59.[doi:10.13705/j.issn.1671-6833.2025.02.010]
点击复制

基于自适应采样策略的模糊分类代理辅助进化算法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年02期
页码:
51-59
栏目:
出版日期:
2025-03-10

文章信息/Info

Title:
Fuzzy Classification Surrogate-assisted Evolutionary Algorithm Based on Adaptive Sampling Strategy
文章编号:
1671-6833(2025)02-0051-09
作者:
李二超 吴 煜
兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050
Author(s):
LI Erchao WU Yu
College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
代理辅助进化算法 代理模型 昂贵多目标优化问题 模型管理
Keywords:
surrogate-assisted evolutionary algorithm surrogate model expensive many-objective optimization problems model management
分类号:
TP18
DOI:
10.13705/j.issn.1671-6833.2025.02.010
文献标志码:
A
摘要:
针对基于分类代理辅助进化算法模型管理效率不高和如何有效降低真实函数评估次数的问题,提出了一种基于自适应采样策略的模糊分类代理辅助进化算法。首先,算法通过帕累托支配关系筛选样本来构造代理模型;其次,采用基于转移的密度估计策略提高选择压力,兼顾收敛性与多样性,同时利用十折交叉验证得到精度信息用来划分状态;最后,设计了一种自适应模型管理策略,其考虑当前种群的收敛性、多样性和不确定性,并根据不同精度状态采用有针对性的采样方式,该算法能够在保证整体性能的前提下,合理减少真实评估次数。为验证所提算法性能,将该算法与其他4种算法在MaF、WFG测试集和汽车侧面碰撞设计与驾驶室设计的实际工程问题上进行了分析对比实验,实验结果表明:所提算法在有限次评估条件下,在解决昂贵多目标优化问题时具有较好的竞争力。
Abstract:
In order to solve the problem of low management efficiency of classification surrogate-assisted evolutionary algorithms based on fuzzy classification and how to effectively reduce the number of real function evaluations, in this study a fuzzy classification surrogate-assisted evolutionary algorithm was proposed based on an adaptive sampling strategy. Firstly, in the algorithm the agent model was constructed by screening samples through the Pareto dominance relationship. Then, the selection pressure was improved by using a transfer-based density estimation strategy, which balanced convergence and diversity. At the same time, ten-fold cross-validation was used to obtain accuracy information to divide the states. Finally, an adaptive model management strategy was designed. Considering the convergence, diversity, and uncertainty of the current population, targeted sampling methods was adopted according to different accuracy states. The algorithm could ensure overall performance while rationally reducing the number of real evaluations. To verify the performance of the proposed algorithm, it was compared with four other algorithms on the MaF and WFG test sets and real-world engineering problems of automotive side impact design and driving cabin design. The experimental results showed that the proposed algorithm, which could prove that the algorithm had good competitiveness in solving expensive multi-objective optimization problems with the limited number of real evaluations.

参考文献/References:

[1]郑金华. 多目标进化算法及其应用[M]. 北京: 科学出版社, 2007. 

ZHENG J H. Multi objective evolutionary algorithm and its applications [M]. Beijing: Science Press, 2007. 
[2]FAN X Z, LI K, TAN K C. Surrogate assisted evolutionary algorithm based on transfer learning for dynamic expensive multi-objective optimisation problems[C]∥2020 IEEE Congress on Evolutionary Computation (CEC). Piscataway:IEEE, 2020: 1-8. 
[3]邓传义, 孙超利, 刘晓彤, 等. 惯性分组和重叠特征选择辅助的昂贵大规模优化算法[J]. 郑州大学学报(工学版), 2023, 44(5): 32-39. 
DENG C Y, SUN C L, LIU X T, et al. An inertial grouping and overlapping feature selection assisted algorithm for expensive large-scale optimization problems[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(5): 32-39. 
[4]WANG R Y, ZHOU Y E, CHEN H N, et al. A surrogate-assisted many-objective evolutionary algorithm using multi-classification and coevolution for expensive optimization problems[J]. IEEE Access, 2021, 9: 159160-159174. 
[5]温文吉. 克里金代理模型和多目标优化算法在天线设计中的应用[D]. 镇江: 江苏科技大学, 2020. 
WEN W J. Application of Kriging proxy model and multiobjective optimization algorithm in antenna design[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. 
[6]郭单. 数据与模型驱动的复杂工业过程智能优化方法及应用研究[D]. 沈阳: 东北大学, 2019. 
GUO D. Research on intelligent optimization method and application of complex industrial process driven by data and model[D]. Shenyang: Northeastern University, 2019. 
[7]DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part Ⅰ: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. 
[8]GU Q H, WANG Q, LI X X, et al. A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems [J]. Knowledge-Based Systems, 2021, 223: 107049. 
[9]CHUGH T, JIN Y C, MIETTINEN K, et al. A surrogateassisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization [J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 129-142. 
[10] SONG Z S, WANG H D, HE C, et al. A Kriging-assisted two-archive evolutionary algorithm for expensive manyobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(6): 1013-1027. 
[11] KELLER J M, GRAY M R, GIVENS J A. A fuzzy Knearest neighbor algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(4): 580-585. 
[12] ZHANG J Y, ZHOU A M, ZHANG G X. A classification and Pareto domination based multiobjective evolutionary algorithm[C]∥2015 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE, 2015: 2883-2890. 
[13] PAN L Q, HE C, TIAN Y, et al. A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(1): 74-88. 
[14] HAO H, ZHOU A M, QIAN H, et al. Expensive multiobjective optimization by relation learning and prediction [J]. IEEE Transactions on Evolutionary Computation, 2022, 26(5): 1157-1170. 
[15] SONODA T, NAKATA M. Multiple classifiers-assisted evolutionary algorithm based on decomposition for high-dimensional multiobjective problems[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(6): 15811595. 
[16] LI M Q, YANG S X, LIU X H. Shift-based density estimation for Pareto-based algorithms in many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 348-365. 
[17] KUMBURE M M, LUUKKA P, COLLAN M. An enhancement of fuzzy K-nearest neighbor classifier using multi-local power means[C]∥Proceedings of the 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). Paris: Atlantis Press, 2019: 83-90. 
[18] CHENG R, LI M Q, TIAN Y, et al. A benchmark test suite for evolutionary many-objective optimization[J]. Complex & Intelligent Systems, 2017, 3(1): 67-81. 
[19] HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506. 
[20] ISHIBUCHI H, MASUDA H, TANIGAKI Y, et al. Modified distance calculation in generational distance and inverted generational distance[C]∥The 8th International Conference of Evolutionary Multi-criterion Optimization. Cham: Springer, 2015: 110-125. 
[21] TANABE R, ISHIBUCHI H. An easy-to-use real-world multi-objective optimization problem suite[J]. Applied Soft Computing, 2020, 89: 106078.

相似文献/References:

[1]黄国如,杨 格,曾博威,等.基于绿灰蓝基础设施融合的城市洪涝灾害调控[J].郑州大学学报(工学版),2023,44(02):14.[doi:10.13705/j.issn.1671-6833.2023.02.018]
 HUANG Guoru,YANG Ge,ZENG Bowei,et al.Urban Flood Disaster Control Based on Green-gray-blue Infrastructure Integration[J].Journal of Zhengzhou University (Engineering Science),2023,44(02):14.[doi:10.13705/j.issn.1671-6833.2023.02.018]
[2]邓传义,孙超利,刘晓彤,等.惯性分组和重叠特征选择辅助的昂贵大规模优化算法[J].郑州大学学报(工学版),2023,44(05):32.[doi:10.13705/j.issn.1671-6833.2023.05.013]
 DENG Chuanyi,SUN Chaoli,LIU Xiaotong,et al.An Inertial Grouping and Overlapping Feature Selection Assisted Algorithm for Expensive Large-scale Optimization Problems[J].Journal of Zhengzhou University (Engineering Science),2023,44(02):32.[doi:10.13705/j.issn.1671-6833.2023.05.013]

更新日期/Last Update: 2025-03-13