WANG Z H, FANG C, LI L P, et al.Anchor-free person target detection algorithm based on heat map prediction [J].Computer Engineering,2024,50(10):51-60.
[2]GOU S P, WANG X L, MAO S S, et al. Weakly-supervised semantic feature refinement network for MMW concealed object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(3): 1363-1373.
[3]CAO J, LI P H,ZHANG H, et al. An improved YOLOv4 lightweight traffic sign detection algorithm[J]. IAENG International Journal of Computer Science, 2023,50(3): 825-831.
[4]许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 1025.
XU D G, WANG L, LI F. Review of typical object detection algorithms fordeep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25.
[5]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[6]REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposalnetworks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[7]HE K M, GKIOXARI G, DOLLÁR P, et al. Mask RCNN[C]∥2017 IEEE International Conference on Computer Vision ( ICCV). Piscataway: IEEE, 2017: 2980-2988.
[8]ROY A M, BOSE R, BHADURI J. A fast accurate finegrain object detection model based on YOLOv4 deep neural network[J]. Neural Computing and Applications, 2022,34(5): 3895-3921.
[9]QIAO S Y, CHEN L C, YUILLE A. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 10213-10224.
[10] BIST R, SUBEDIS B, YANG X, et al. A novel YOLOv6 object detector for monitoring piling behavior of cage-free laying hens[J]. Agriengineering,2023,5(2): 905-923.
[11]WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-theart for real-time object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 7464-7475.
[12] ZHOU F B, ZHAO H L, NIE Z. Safety helmet detection based on YOLOv5[C]∥2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). Piscataway: IEEE, 2021: 6-11.
[13] ZENG L P, DUAN X L, PAN Y H, et al. Research on the algorithm of helmet-wearing detection based on the optimized yolov4[J]. The Visual Computer:International Journal of Computer Graphics, 2023, 39(5): 2165-2175.
[14] CHENG R, HE X W, ZHENG Z L, et al. Multi-scale safety helmet detection based on SAS-YOLOv3-tiny[J]. Applied Sciences, 2021, 11(8): 3652.
[15]程换新, 蒋泽芹, 程力, 等. 基于改进YOLOX-S的安全帽反光衣检测算法[J]. 电子测量技术, 2022, 45 (6): 130-135.
CHENG H X, JIANG Z Q, CHENG L, et al. Helmet andreflective clothing detection algorithm based on improved YOLOX-S[J]. Electronic Measurement Technology, 2022, 45(6): 130-135.
[16]郑海洋, 宋纯贺, 武婷婷, 等. 面向绝缘手套佩戴状况检测的小目标检测与匹配算法[J]. 小型微型计算机系统, 2023, 44(9): 1989-1995.
ZHENG H Y, SONG C H, WU T T, et al. Small target detection and matching algorithm for wearing condition detection of insula-ting gloves[J]. Journal of ChineseComputer Systems, 2023, 44(9): 1989-1995.
[17] TAN M X, PANG R M, LEQ V. EfficientDet: scalable and efficient object detection[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 10781-10790.
[18] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression [J]. Neurocomputing, 2022, 506: 146-157.
[19] GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C] ∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 7036-7045.
[20]WU T Y, TANG S, ZHANG R, et al. CGNet: a lightweight context guided network for semantic segmentation [J]. IEEE Transactions on Image Processing,2021,30: 1169-1179.
[21]WU Y X, HE K M.Group normalization[J]. International Journal of Computer Vision. 2020,128(3):742-755.
[22] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.