[1]SHOJAEINASAB A, CHARTER T, JALAYER M, et al. Intelligent manufacturing execution systems: a systematic review[J]. Journal of Manufacturing Systems, 2022, 62: 503-522. [2]李腾, 冯珊. 面向 “货到人” 拣选系统的一种随机调度策略[J]. 工业工程, 2020, 23(2): 59-66.
LI T, FENG S. A research on a random scheduling strategy of “rack to picker” picking system[J]. Industrial Engineering Journal, 2020, 23(2): 59-66.
[3]FRAGAPANE G, IVANOV D, PERON M, et al. Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics[J]. Annals of Operations Research, 2022, 308(1): 125-143.
[4]HERCIK R, BYRTUS R, JAROS R, et al. Implementation of autonomous mobile robot in SmartFactory[J]. Applied Sciences, 2022, 12(17): 8912.
[5]WANG X, WANG L, WANG S Y, et al. Recommending-and-grabbing: a crowdsourcing-based order allocation pattern for on-demand food delivery[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 838-853.
[6]刘广瑞, 王庆海, 姚冬艳. 基于改进人工蜂群算法的多无人机协同任务规划[J]. 郑州大学学报(工学版), 2018, 39(3): 51-55.
LIU G R, WANG Q H, YAO D Y. Multi-UAV cooperative mission planning based on improved artificial bee colony algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2018, 39(3): 51-55.
[7]WU X W, XIAO B, CAO L, et al. Optimal transport and model predictive control-based simultaneous task assignment and trajectory planning for unmanned system swarm [J]. Journal of Intelligent & Robotic Systems, 2024, 110(1): 28.
[8]王俊英, 颜芬芬, 陈鹏, 等. 基于概率自适应蚁群算法的云任务调度方法[J]. 郑州大学学报(工学版), 2017, 38(4): 51-56.
WANG J Y, YAN F F, CHEN P, et al. Task scheduling method based on probability adaptive ant colony optimization in cloud computing[J]. Journal of Zhengzhou University (Engineering Science), 2017, 38(4): 51-56.
[9]吴蔚楠, 关英姿, 郭继峰, 等. 基于SEAD任务特性约束的协同任务分配方法[J]. 控制与决策, 2017, 32 (9): 1574-1582.
WU W N, GUAN Y Z, GUO J F, et al. Research on cooperative task assignment method used to the mission SEAD with real constraints[J]. Control and Decision, 2017, 32(9): 1574-1582.
[10]鞠锴, 冒泽慧, 姜斌, 等. 基于势博弈的异构多智能体系统任务分配和重分配[J]. 自动化学报, 2022, 48 (10): 2416-2428.
JU K, MAO Z H, JIANG B, et al. Task allocation and reallocation for heterogeneous multiagent systems based on potential game[J]. Acta Automatica Sinica, 2022, 48 (10): 2416-2428.
[11]施伟, 冯旸赫, 程光权, 等. 基于深度强化学习的多机协同空战方法研究 [J]. 自动化学报, 2021, 47 (7): 1610-1623.
SHI W, FENG Y H, CHENG G Q, et al. Research on multi-aircraft cooperative air combat method based on deep reinforcement learning [J]. ACTA Automatica Sinica, 2021, 47(7):1610-1623.
[12] MOTES J, SANDSTRÖM R, LEE H, et al. Multi-robot task and motion planning with subtask dependencies[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3338-3345.
[13] YIN Z Z, LIU J H, WANG D P. Multi-AGV task allocation with attention based on deep reinforcement learning [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36(9): 1-20.
[14] LI M G, MA M, WANG L, et al. Multitask-oriented collaborative crowdsensing based on reinforcement learning and blockchain for intelligent transportation system[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (9): 9503-9514.
[15] OROOJLOOY A, HAJINEZHAD D. A review of cooperative multi-agent deep reinforcement learning[J]. Applied Intelligence, 2023, 53(11): 13677-13722.
[16]WANG H P, LI S Q, JI H C. Fitness-based hierarchical reinforcement learning for multi-human-robot task allocation in complex terrain conditions[J]. Arabian Journal for Science and Engineering, 2023, 48(5): 7031-7041.
[17] XIAO X J, PAN Y H, LV L L, et al. Scheduling multimode resource-constrained tasks of automated guided vehicles with an improved particle swarm optimization algorithm[J]. IET Collaborative Intelligent Manufacturing, 2021, 3(2): 93-104.
[18]王乐,齐尧,何滨兵,等.机器人自主探索算法综述[J].计算机应用,2023,43(A1):314-322.
WANG L, QI Y, HE B B,et al. Survey of autonomous exploration algorithms for robots[J]. Journal of Computer Applications, 2023,43(A1):314-322.
[19] VU Q T, DUONG V T, NGUYEN H H, et al. Optimization of swimming mode for elongated undulating fin using multi-agent deep deterministic policy gradient[J]. Engineering Science and Technology, an International Journal, 2024, 56: 101783.
[20] SUMIEA E H, ABDULKADIR S J, ALHUSSIAN H S, et al. Deep deterministic policy gradient algorithm: a systematic review[J]. Heliyon, 2024, 10(9): e30697.
[21] CHAI J J, LI W F, ZHU Y H, et al. UNMAS: multiagent reinforcement learning for unshaped cooperative scenarios[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(4): 2093-2104.
[22] MENG X Q, JIANG J H, WANG H. AGWO: advanced GWO in multi-layer perception optimization[J]. Expert Systems with Applications, 2021, 173: 114676.
[23]敬超,全育涛,陈艳.基于多层感知机-注意力模型的功耗预测算法[J/OL].计算机应用,2024:1-10(202411-13)[2024-11-15].http:∥kns. cnki.net/kcms/detail/51.1307.TP.20241112.1237.004.html.
JING C, QUAN Y T, CHEN Y. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm[J/OL]. Journal of Computer Applications, 2024:1-10(2024-11-13)[2024-11-15].http: ∥kns. cnki. net/kcms/detail/51. 1307. TP. 20241112. 1237.004.html.