[1]DE BONO J P, MCDOWELL G R. Particle breakage criteria in discrete-element modelling[J]. Geotechnique, 2016, 66(12): 1014-1027.[2]YU F W. Particle breakage and the critical state of sands[J]. Geotechnique, 2017, 67(8): 713-719.
[3]潘洪武, 王伟, 张丙印. 基于计算接触力学的粗颗粒土体材料细观性质模拟[J]. 工程力学, 2020, 37(7): 151-158.
PAN H W, WANG W, ZHANG B Y. Simulation on meso-mechanical property of coarse-grained soil materials based on computational contact method[J]. Engineering Mechanics, 2020, 37(7): 151-158.
[4]XIAO Y, LIU H L, CHEN Y M, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2015, 141(7): 08215001.
[5]ALAEI E, MARKS B, EINAV I. A five-parameter hydrodynamic-plastic model for crushable sand[J]. International Journal of Solids and Structures, 2022, 254: 111914.
[6]LIU H B, SONG E X, LING H I. Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics[J]. Mechanics Research Communications, 2006, 33(4): 515-531.
[7]WU E L, ZHU J G, SUN Y F, et al. A general plastic model for rockfill material developed by using Caputo fractional derivative[J]. Computers and Geotechnics, 2022, 151: 104948.
[8]SHU S, YAN C, ZHAO W, et al. The role of breakagedependent critical state lines in constitutive modelling of sand under axisymmetric drained and undrained loads: a comparative study[J]. Marine Georesources & Geotechnology, 2024, 42(11): 1717-1727.
[9]HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
[10] EINAV I. Breakage mechanics: part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2008, 55(6): 1274-1297.
[11] SUN Y F, SUMELKA W, GAO Y F. Bounding surface plasticity for sand using fractional flow rule and modified critical state line[J]. Archive of Applied Mechanics, 2020, 90(11): 2561-2577.
[12] LI X S, WANG Y. Linear representation of steady-state line for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217.
[13] DAOUADJI A, HICHER P Y. An enhanced constitutive model for crushable granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(6): 555-580.
[14] LIU H B, LING H I. Constitutive description of interface behavior including cyclic loading and particle breakage within the framework of critical state soil mechanics[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(12): 1495-1514.
[15] DAFALIAS Y F, MANZARI M T. Simple plasticity sand model accounting for fabric change effects[J]. Journal of Engineering Mechanics, 2004, 130(6): 622-634.
[16] LI X S, DAFALIAS Y F. Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, 2012, 138(3): 263-275.
[17] SUN Y F, SUMELKA W, HE S H, et al. Enhanced fractional model for soil-structure interface considering 3D stress state and fabric effect[J]. Journal of Engineering Mechanics, 2022, 148(9): 1-16.
[18] PETALAS A L, DAFALIAS Y F, PAPADIMITRIOU A G. SANISAND-F: sand constitutive model with evolving fabric anisotropy[J]. International Journal of Solids and Structures, 2020, 188-189: 12-31.
[19] VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
[20] YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179-188.