[1]谷成龙,孙逸飞,黄星博,等.两种考虑颗粒破碎的砂土边界面本构模型对比分析[J].郑州大学学报(工学版),2026,47(01):110-115.[doi:10.13705/j.issn.1671-6833.2025.04.001]
 GU Chenglong,SUN Yifei,HUANG Xingbo,et al.Comparative Analysis of Two Boundary Surface Constitutive Models for Sand Considering Particle Breakage[J].Journal of Zhengzhou University (Engineering Science),2026,47(01):110-115.[doi:10.13705/j.issn.1671-6833.2025.04.001]
点击复制

两种考虑颗粒破碎的砂土边界面本构模型对比分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年01期
页码:
110-115
栏目:
出版日期:
2026-01-06

文章信息/Info

Title:
Comparative Analysis of Two Boundary Surface Constitutive Models for Sand Considering Particle Breakage
文章编号:
1671-6833(2026)01-0110-06
作者:
谷成龙1 孙逸飞12 黄星博1 王钰轲3
1.河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210024;2.太原理工大学 土木工程学院,山西 太原 030024;3.郑州大学 水利与交通学院,河南 郑州 450001
Author(s):
GU Chenglong1 SUN Yifei1 2 HUANG Xingbo1 WANG Yuke3
1.Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210024, China; 2.College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 3.School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
关键词:
本构模型 组构 颗粒破碎 返回映射法 砂土
Keywords:
constitutive model fabric particle breakage return mapping algorithm soil
分类号:
TU43O344
DOI:
10.13705/j.issn.1671-6833.2025.04.001
文献标志码:
A
摘要:
为了准确考虑砂土的颗粒破碎对建立本构模型的影响,一种方法是直接引入颗粒破碎率至e-ln p平面的非线性临界状态线;另一种方法是间接在其他尺度空间重新构造具有线性或者其他简单函数关系的临界状态线。将基于直接表达和间接表达的临界状态线引入修正的SANISAND模型,着重对比这两类临界状态线在砂土弹塑性本构建模时的应用与表现。通过建立基于切平面法的返回映射算法,将所建立模型进行编译,对丰浦砂排水和不排水试验进行模拟发现:直接考虑颗粒破碎的临界状态线适用于部分初始状态的砂土,即初始围压或者孔隙比变化较小的试验模拟;间接考虑颗粒破碎的临界状态线更适用于初始状态变化较大的砂土。
Abstract:
To accurately consider the effect of particle breakage on the establishment of constitutive models for sand, one approach directly introduced the particle breakage ratio into a nonlinear critical state line (CSL) in the e-ln p plane, while another approach indirectly reconstructed the critical state line in a different scale space, using a linear or other simple functional relationship. The implementation and performance of the two kinds of CSL were compared by incorporating the modified SANISAND model. Using the return mapping algorithm based on cutting plane, model simulations of the drained and undrained tests on Toyoura sand were carried out. It was found that the CSL directly incorporating particle breakage ratio was only suitable for modelling sand with partial initial states, i.e., experimental simulations with small changes in initial perimeter pressure or pore ratio, while for sand with large changes in initial states, the critical state line with indirect consideration of particle crushing was more suitable.

参考文献/References:

[1]DE BONO J P, MCDOWELL G R. Particle breakage criteria in discrete-element modelling[J]. Geotechnique, 2016, 66(12): 1014-1027.

[2]YU F W. Particle breakage and the critical state of sands[J]. Geotechnique, 2017, 67(8): 713-719.
[3]潘洪武, 王伟, 张丙印. 基于计算接触力学的粗颗粒土体材料细观性质模拟[J]. 工程力学, 2020, 37(7): 151-158.
PAN H W, WANG W, ZHANG B Y. Simulation on meso-mechanical property of coarse-grained soil materials based on computational contact method[J]. Engineering Mechanics, 2020, 37(7): 151-158.
[4]XIAO Y, LIU H L, CHEN Y M, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2015, 141(7): 08215001.
[5]ALAEI E, MARKS B, EINAV I. A five-parameter hydrodynamic-plastic model for crushable sand[J]. International Journal of Solids and Structures, 2022, 254: 111914.
[6]LIU H B, SONG E X, LING H I. Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics[J]. Mechanics Research Communications, 2006, 33(4): 515-531.
[7]WU E L, ZHU J G, SUN Y F, et al. A general plastic model for rockfill material developed by using Caputo fractional derivative[J]. Computers and Geotechnics, 2022, 151: 104948.
[8]SHU S, YAN C, ZHAO W, et al. The role of breakagedependent critical state lines in constitutive modelling of sand under axisymmetric drained and undrained loads: a comparative study[J]. Marine Georesources & Geotechnology, 2024, 42(11): 1717-1727.
[9]HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
[10] EINAV I. Breakage mechanics: part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2008, 55(6): 1274-1297.
[11] SUN Y F, SUMELKA W, GAO Y F. Bounding surface plasticity for sand using fractional flow rule and modified critical state line[J]. Archive of Applied Mechanics, 2020, 90(11): 2561-2577.
[12] LI X S, WANG Y. Linear representation of steady-state line for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217.
[13] DAOUADJI A, HICHER P Y. An enhanced constitutive model for crushable granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(6): 555-580.
[14] LIU H B, LING H I. Constitutive description of interface behavior including cyclic loading and particle breakage within the framework of critical state soil mechanics[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(12): 1495-1514.
[15] DAFALIAS Y F, MANZARI M T. Simple plasticity sand model accounting for fabric change effects[J]. Journal of Engineering Mechanics, 2004, 130(6): 622-634.
[16] LI X S, DAFALIAS Y F. Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, 2012, 138(3): 263-275.
[17] SUN Y F, SUMELKA W, HE S H, et al. Enhanced fractional model for soil-structure interface considering 3D stress state and fabric effect[J]. Journal of Engineering Mechanics, 2022, 148(9): 1-16.
[18] PETALAS A L, DAFALIAS Y F, PAPADIMITRIOU A G. SANISAND-F: sand constitutive model with evolving fabric anisotropy[J]. International Journal of Solids and Structures, 2020, 188-189: 12-31.
[19] VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
[20] YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179-188.

相似文献/References:

[1]崔允亮,项鹏飞,王新泉,等.考虑塑性体积应变的扰动状态本构模型改进[J].郑州大学学报(工学版),2018,39(01):47.[doi:10.13705/j.issn.1671-6833.2018.01.026]
 Cui Yunliang,Xiang Pengfei,Wang Xinquan,et al.Improving the Disturbance State Constitutive Model by Considering Plastic Volumetric Strain[J].Journal of Zhengzhou University (Engineering Science),2018,39(01):47.[doi:10.13705/j.issn.1671-6833.2018.01.026]

更新日期/Last Update: 2026-01-17