[1]蒋建东,张海峰,郭嘉琦.基于改进蜣螂优化算法的短期风电功率预测[J].郑州大学学报(工学版),2025,46(04):129-136.[doi:10.13705/j.issn.1671-6833.2025.01.015]
 JIANG Jiandong,ZHANG Haifeng,GUO Jiaqi.Short-term Wind Power Prediction Based on Improved Dung Beetle Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):129-136.[doi:10.13705/j.issn.1671-6833.2025.01.015]
点击复制

基于改进蜣螂优化算法的短期风电功率预测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年04期
页码:
129-136
栏目:
出版日期:
2025-07-10

文章信息/Info

Title:
Short-term Wind Power Prediction Based on Improved Dung Beetle Optimization Algorithm
文章编号:
1671-6833(2025)04-0129-08
作者:
蒋建东1 张海峰1 郭嘉琦2
1. 郑州大学 电气与信息工程学院,河南 郑州 450001;2. 国网河南省电力公司 安阳供电公司,河南 安阳 455000
Author(s):
JIANG Jiandong1 ZHANG Haifeng1 GUO Jiaqi2
1. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; 2. Anyang Power Supply Company, State Grid Henan Electric Power Company, Anyang 455000, China
关键词:
风电功率预测 改进蜣螂优化算法 变分模态分解 卷积神经网络 双向长短期记忆神经网络
Keywords:
wind power prediction improved dung beetle optimization algorithm VMD CNN BiLSTM
分类号:
TM614
DOI:
10.13705/j.issn.1671-6833.2025.01.015
文献标志码:
A
摘要:
为了提高短期风电功率预测的准确度,建立了一种基于 POTDBO-VMD-CNN-BiLSTM 的短期风电功率预测模型。 首先,采用融合 Piecewise 混沌映射、鱼鹰优化算法和自适应 T 分布扰动 3 种策略对蜣螂优化算法进行改进,以平衡蜣螂优化算法的全局探索和局部开发能力并加快其收敛速度;其次,用改进的蜣螂优化算法( POTDBO) 对变分模态分解(VMD)的分解数 K 和惩罚因子 α 进行寻优处理,提高 VMD 的分解效果,再用 POTDBO-VMD 模型对风电功率进行分解;最后,将分解的各频率分量以及残差分量分别输入到 CNN-BiLSTM 混合模型中预测,再将各频率分量以及残差分量的预测结果进行序列重构得到风电功率预测结果。 通过新疆某风电场和吉林某风电场的实际数据对所提出模型进行实验,并和 CNN-BiLSTM 模型进行对比,结果显示:所提模型在决定系数 R2 上分别增加了 4. 21%,7. 69%,表现出更好的预测精度。
Abstract:
A short-term wind power prediction model based on POTDBO-VMD-CNN-BiLSTM was proposed to improve the accuracy of short-term wind power prediction. Firstly, three strategies were adopted to improve the dung beetle optimization algorithm, including integrating Piecewise chaotic mapping, integrating Osprey optimization algorithm, and integrating adaptive T-distribution perturbation, in order to balance the global exploration and local development capabilities of the dung beetle optimization algorithm and accelerate its convergence speed. Secondly, the improved dung beetle optimization algorithm ( POTDBO) was used to optimize the decomposition number and penalty factor of variational mode decomposition (VMD) to improve the decomposition effect of VMD. Then, the POTDBO-VMD model was used to decompose the wind power. Finally, the decomposed frequency components and residual components were input into the CNN-BiLSTM hybrid model for prediction, and the prediction results of each frequency component and residual component were sequentially reconstructed to obtain the wind power prediction results. The proposed model was experimentally tested using actual data from wind farms in Xinjiang and Jilin. Compared with the CNN-BiLSTM model, the results showed that the proposed model increased by 4. 21% and 7. 69% on R 2 respectively, demonstrating better prediction accuracy.

参考文献/References:

[1] 韩自奋, 景乾明, 张彦凯, 等. 风电预测方法与新趋 势综述 [ J] . 电 力 系 统 保 护 与 控 制, 2019, 47 ( 24) : 178-187. 

HAN Z F, JING Q M, ZHANG Y K, et al. Review of wind power forecasting methods and new trends[ J] . Power System Protection and Control, 2019, 47( 24) : 178- 187. 
[2] GONG M J, YAN C C, XU W, et al. Short-term wind power forecasting model based on temporal convolutional network and Informer[J]. Energy, 2023, 283: 129171. 
[3] 涂思嘉, 杨悦荣, 林舜江, 等. 考虑风电不确定性的 交直流混联电网静态电压稳定优化控制方法[ J] . 电 力科学与技术学报, 2023, 38(3) : 94-104. 
TU S J, YANG Y R, LIN S J, et al. An optimal control method for static voltage stability of AC / DC hybrid power grid considering the uncertainty of wind power[ J] . Journal of Electric Power Science and Technology, 2023, 38 (3) : 94-104. 
[4] 张颖超, 成金杰, 邓华, 等. 基于相似日和特征提取 的短期风电功率预测[ J] . 郑州大学学报( 工学版) , 2020, 41(5) : 44-49. 
ZHANG Y C, CHENG J J, DENG H, et al. Short-term wind power prediction based on similar day and feature extraction [ J] . Journal of Zhengzhou University ( Engineering Science) , 2020, 41(5) : 44-49. 
[5] 蒋建东, 孙书凯, 董存, 等. 风电中长期电量预测研 究现状[ J] . 高电压技术, 2022, 48(2) : 409-419. 
JIANG J D, SUN S K, DONG C, et al. Research status of mid-long term wind power generation forecasting [ J] . High Voltage Engineering, 2022, 48(2) : 409-419. 
[6] ANTONANZAS J, OSORIO N, ESCOBAR R, et al. Review of photovoltaic power forecasting[ J] . Solar Energy, 2016, 136: 78-111. 
[7] AHMED R, SREERAM V, MISHRA Y, et al. A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization[ J] . Renewable and Sustainable Energy Reviews, 2020, 124: 109792. 
[8] SOUBDHAN T, NDONG J, OULD-BABA H, et al. A robust forecasting framework based on the Kalman filtering approach with a two-fold parameter tuning procedure: application to solar and photovoltaic prediction [ J] . Solar Energy, 2016, 131: 246-259. 
[9] DE ALENCAR D B, DE MATTOS AFFONSO C, DE OLIVEIRA R C L, et al. Different models for forecasting wind power generation: case study[ J] . Energies, 2017, 10(12) : 1976. 
[10] YANG D Z. Making reference solar forecasts with climatology, persistence, and their optimal convex combination [ J] . Solar Energy, 2019, 193: 981-985. 
[11] HU W B, YANG C Z. Grey model of direct solar radiation intensity on the horizontal plane for cooling loads calculation[ J] . Building and Environment, 2000, 35( 7) : 587-593. 
[12] WANG S, LI B, LI G Z, et al. Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration [ J ] . Applied Energy, 2021, 292: 116851. 
[13] LIU W, LIU Y M, FU L, et al. Wind power forecasting method based on bidirectional long short-term memory neural network and error correction[ J]. Electric Power Components and Systems, 2021, 49(13 / 14): 1169-1180. 
[14] LI Z, XU R S, LUO X R, et al. Short-term wind power prediction based on modal reconstruction and CNN-BiLSTM[ J] . Energy Reports, 2023, 9: 6449-6460. 
[15] 李润金, 李丽霞. 基于 VMD-CNN-LSTM 模 型 的 短 期 风电功 率 预 测 [ J] . 沈 阳 工 程 学 院 学 报 ( 自 然 科 学 版) , 2024, 20(1) : 6-13. 
LI R J, LI L X. Short-term wind power prediction based on VMD-CNN-LSTM model[ J]. Journal of Shenyang Institute of Engineering (Natural Science), 2024, 20(1): 6-13. 
[16] 陈申, 叶小岭, 熊雄, 等. 基于天鹰优化算法的短期 风电功率区间预测[ J] . 重庆理工大学学报( 自然科 学) , 2023, 37(4) : 304-314. 
CHEN S, YE X L, XIONG X, et al. Short-term wind power interval prediction based on Aquila optimization algorithm[ J] . Journal of Chongqing University of Technology (Natural Science) , 2023, 37(4) : 304-314. 
[17] 欧阳资生, 唐伯聪. 基于 VMD-BiLSTM-ATT 预测模型 的碳中 和 指 数 量 化 投 资 研 究 [ J] . 金 融 经 济, 2023 (10) : 75-90. 
OUYANG Z S, TANG B C. Quantifying carbon neutrality investment research based on VMD-BiLSTM-ATT forecasting model[ J] . Finance Economy, 2023(10) : 75-90. 
[18] 肖烈禧, 张玉, 周辉, 等. 基于 IAOA-VMD-LSTM 的超 短期风电功率预测[ J] . 太阳能学报, 2023, 44( 11) : 239-246. 
XIAO L X, ZHANG Y, ZHOU H, et al. Ultra short trem wind power prediction based on IAOA-VMD-LSTM [ J] . Acta Energiae Solaris Sinica, 2023, 44(11) : 239-246. 
[19] 李飞宏, 肖迎群. 基于 VMD-GRU-EC 的短期电力负荷 预测方法[ J] . 中国测试, 2023, 49(10) : 120-127. 
LI F H, XIAO Y Q. Short-term power load forecasting method based on VMD-GRU-EC[ J] . China Measurement & Test, 2023, 49(10) : 120-127. 
[20] XUE J K, SHEN B. Dung beetle optimizer: a new metaheuristic algorithm for global optimization[ J] . The Journal of Supercomputing, 2023, 79(7) : 7305-7336. 
[21] 郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用 [ J] . 计算机科学与探索, 2024, 18(4) : 930-946. 
GUO Q, ZHENG Q X. Multi-strategy improved dung beetle optimizer and its application [ J ]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 930-946. 
[22] DEHGHANI M, TROJOVSKY P. Osprey optimization algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems [ J] . Frontiers in Mechanical Engineering, 2023, 8: 1126450. 
[23] 李津, 史加荣, 张琰妮, 等. 基于最大信息系数的短 期太 阳 辐 射 协 同 估 计 [ J] . 太 阳 能 学 报, 2023, 44 (9) : 286-294. 
LI J, SHI J R, ZHANG Y N, et al. Short-term solar radiation synergy estimation based on maximum information coefficient[ J] . Acta Energiae Solaris Sinica, 2023, 44 (9) : 286-294. 
[24] 杨锡运, 刘玉奇, 李建林. 基于四分位法的含储能光 伏电站可靠性置信区间计算方法[ J] . 电工技术学报, 2017, 32(15) : 136-144. 
YANG X Y, LIU Y Q, LI J L. Reliability confidence interval calculation method for photovoltaic power station with energy storage based on quartile method[ J] . Transactions of China Electrotechnical Society, 2017, 32 (15) : 136-144. 
[25] 杨子民, 彭小圣, 熊予涵, 等. 计及邻近风电场信息 与 CNN-BiLSTM 的短期风电功率预测[ J] . 南方电网 技术, 2023, 17(2) : 47-56. 
YANG Z M, PENG X S, XIONG Y H, et al. Short-term wind power prediction based on information in neighboring wind farms and CNN-BiLSTM [ J] . Southern Power System Technology, 2023, 17(2) : 47-56. 
[26] 辛征, 王琦, 刘兴然. 短期风电功率预测的深度学习 模型[ J] . 计算机时代, 2023(2) : 33-36, 41. 
XIN Z, WANG Q, LIU X R. Deep learning model for short-term wind power prediction [ J ] . Computer Era, 2023(2) : 33-36, 41.

相似文献/References:

[1]孙晓燕,时良振,徐瑞东,等.基于区间样本和回声状态网络的风电功率不确定性预测[J].郑州大学学报(工学版),2017,38(01):56.[doi:10.13705/j.issn.1671-6833.2017.01.003]
 Sun Xiaoyan,Shi Liangzhen,Xu Ruidong,et al.Forecast of wind power generation with uncertainty based on interval sample and echo state network[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):56.[doi:10.13705/j.issn.1671-6833.2017.01.003]

更新日期/Last Update: 2025-07-13