[1]刘大勇,杨 平,谷亚军,等.地铁明挖区间分期交界面涌水液氮冻结修复与实测[J].郑州大学学报(工学版),2026,47(01):102-109.[doi:10.13705/j.issn.1671-6833.2025.04.011]
 LIU Dayong,YANG Ping,GU Yajun,et al.Field Measurement Study on Liquid Nitrogen Freezing for Controlling Water Seepage at Tunnel Open-cut Excavation Interfaces[J].Journal of Zhengzhou University (Engineering Science),2026,47(01):102-109.[doi:10.13705/j.issn.1671-6833.2025.04.011]
点击复制

地铁明挖区间分期交界面涌水液氮冻结修复与实测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年01期
页码:
102-109
栏目:
出版日期:
2026-01-06

文章信息/Info

Title:
Field Measurement Study on Liquid Nitrogen Freezing for Controlling Water Seepage at Tunnel Open-cut Excavation Interfaces
文章编号:
1671-6833(2026)01-0102-08
作者:
刘大勇1 杨 平1 谷亚军2 成建华2 王加辉1
1.南京林业大学 土木工程学院,江苏 南京 210037;2.苏州市轨道交通建设有限公司,江苏 苏州 215004
Author(s):
LIU Dayong1 YANG Ping1 GU Yajun2 CHENG Jianhua2 WANG Jiahui1
1.College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China; 2. Suzhou Rail Transit Construction Co., Ltd., Suzhou 215004, China
关键词:
突涌 液氮冻结修复 冻结壁发展速度 液氮消耗量 实测研究
Keywords:
water inrush liquid nitrogen freezing repair growth rate of the freezing wall liquid nitrogen consumption field measurement study
分类号:
TU445
DOI:
10.13705/j.issn.1671-6833.2025.04.011
文献标志码:
A
摘要:
苏州某地铁建设工程河道内分期明挖区间基坑水泥搅拌桩因先期开挖时变形过大,导致止水帷幕失效,且经双液注浆结合MJS加固处理后仍未能阻绝涌砂冒水。为此,通过采取液氮人工冻结形成有效止水帷幕,成功实现在大渗流条件下对失效止水帷幕的修复施工。对基坑止水帷幕失效进行分析,提出液氮冻结修复施工方案,采用现场实测的方法,统计分析了液氮冻结止水修复施工过程中冻结壁温度、液氮用量与冻结壁发展速度的变化规律。结果表明:水泥系改良土渗漏处冻结壁发展速度为67.3 mm/d,是无渗流处冻结壁平均发展速度的58.6%。渗流点冻结土体温度与非渗漏处冻结土体温度相差达40 ℃以上,渗流条件对冻结壁的发展抑制作用明显。积极冻结期冻结每立方米土消耗液氮1.671×103 kg,维护冻结期单组每日消耗液氮3.49×103 kg,为经验预估值的48.5%。
Abstract:
In a certain subway construction project in Suzhou, the cement soil mixed piles in the open-cut excavation area of the river channel experienced excessive deformation during the initial excavation, resulting in the failure of the waterproof curtain. Even after treatment with double-liquid grouting combined with MJS reinforcement, it remained ineffective in stopping the flow of sand and water. By using liquid nitrogen artificial ground freezing to form an effective waterproof curtain, the repair construction of the failed waterproof curtain on the condition of large seepage was successfully realized. An analysis of the failure of the foundation pit′s waterproof curtain was conducted, and a construction plan for liquid nitrogen freezing repair was proposed. Using on-site measurements, the study statistically evaluated the temperature of the frozen wall, the consumption of liquid nitrogen, and the growth rate of the freezing wall during the repair construction process. The results showed that the growth rate of the freezing wall at the leakage site of the cement-based improved soil was 67.3 mm/d, which was 58.6% of the average expansion rate of the frozen wall at the non-seepage area, and the temperature difference between the frozen soil at the seepage point and the non-seepage area exceeded 40 ℃ , which showed a clearly inhibitory effect on the expansion of the frozen wall. During the active freezing period, each cubic meter of soil required 1.671×103 kg of liquid nitrogen, and each set of freezing pipes consumed 3.49×103 kg of liquid nitrogen daily during the maintenance freezing period, which was 48.5% of the empirical estimate.

参考文献/References:

[1]刁鹏程, 杨平. 液氮冻结二次加固在富水软弱地层小盾构接收中的应用与实测[J]. 隧道建设(中英文), 2018, 38(6): 1044-1051.

DIAO P C, YANG P. Application and measurement of secondary consolidation by liquid nitrogen freezing to small shield receiving in water-rich and soft-weak strata[J]. Tunnel Construction, 2018, 38(6): 1044-1051.
[2]YANG P, ZHAO J L, LI L. An artificial freezing technique to facilitate shield tail brush replacement under high pore-water pressure using liquid nitrogen[J]. KSCE Journal of Civil Engineering, 2021, 25(4): 1504-1514.
[3]曾涛. 应用液氮冻结技术修复软土地基中的地铁隧道[J]. 煤炭科学技术, 2010, 38(6): 41-43, 60.
ZENG T. Application of liquid nitrogen ground freezing technology to repair subway tunnel in soft soil base[J]. Coal Science and Technology, 2010, 38(6): 41-43, 60.
[4]邓晓鹏. 浸盐地层液氮冻结温度场研究[D]. 徐州: 中国矿业大学, 2016.
DENG X P. Study on the liquid nitrogen freezing temperature field in saline soil[D]. Xuzhou: China University of Mining and Technology, 2016.
[5]KANG Y S, HOU C C, LI K J, et al. Evolution of temperature field and frozen wall in sandy cobble stratum using LN2 freezing method[J]. Applied Thermal Engineering, 2021, 185: 116334.
[6]王宁宁, 盛炎民, 史博, 等. 液氮冻结止水施工技术在地下连续墙中的应用[J]. 施工技术(中英文), 2023, 52(21): 76-80.
WANG N N, SHENG Y M, SHI B, et al. Application of liquid nitrogen freezing water sealing construction technology in diaphragm wall[J]. Construction Technology, 2023, 52(21): 76-80.
[7]黄建华, 严耿明, 覃少杰. 液氮冻结加固冻结管内换热机制及对流换热系数研究[J]. 岩土力学, 2022, 43(9): 2624-2633.
HUANG J H, YAN G M, QIN S J. Heat transfer mechanism and convective heat transfer coefficient in freezing pipes for freezing reinforcement using liquid nitrogen[J]. Rock and Soil Mechanics, 2022, 43(9): 2624-2633.
[8]石荣剑, 岳丰田, 张勇, 等. 液氮冻结管内沸腾段分布特征的试验研究[J]. 煤炭学报, 2013, 38(7): 1143-1148.
SHI R J, YUE F T, ZHANG Y, et al. Experimental study on the distribution of boiling sections in liquid nitrogen freezing pipe[J]. Journal of China Coal Society, 2013, 38(7): 1143-1148.
[9]NIKOLAEV P, JIVKOV A P, MARGETTS L, et al. Modelling artificial ground freezing subjected to high velocity seepage[J]. International Journal of Heat and Mass Transfer, 2024, 221: 125084.
[10]孙立强, 商安策, 郎瑞卿, 等. 渗流地层人工冻结壁交圈时间计算方法[J]. 岩石力学与工程学报, 2023, 42(增刊1): 3663-3673.
SUN L Q, SHANG A C, LANG R Q, et al. Calculation method of artificial freezing wall closure time in seepage stratum[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S1): 3663-3673.
[11]张胜利, 杨杰. 冻结法施工手册[M]. 北京: 应急管理出版社, 2021.
ZHANG S L, YANG J. Construction handbook for ground freezing method[M]. Beijing: Emergency Management Press, 2021.
[12]张雅琴, 杨平, 江汪洋, 等. 含水率及应变速率对冻结粉质黏土强度特性影响[J]. 郑州大学学报(工学版), 2020, 41(3): 79-84.
ZHANG Y Q, YANG P, JIANG W Y, et al. Effect of water content and strain rate on the strength characteristics of frozen silty clay[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(3): 79-84.
[13]荣传新, 王彬, 程桦, 等. 大流速渗透地层人工冻结壁形成机制室内模型试验研究[J]. 岩石力学与工程学报, 2022, 41(3): 596-613.
RONG C X, WANG B, CHENG H, et al. Laboratory model test study on formation mechanisms of artificial frozen walls in permeable strata with high seepage velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 596-613.
[14]赵宇辉, 杨平, 王宁, 等. 下穿车站交叠区域MJS+水平冻结加固解冻温度场研究[J]. 林业工程学报, 2021, 6(4): 159-166.
ZHAO Y H, YANG P, WANG N, et al. Study on MJS+horizontal freezing reinforcement and thawing temperature field in the overlapped area of the underpass station[J]. Journal of Forestry Engineering, 2021, 6(4): 159-166.
[15]王耀林. 国外井巷特殊施工技术[J]. 世界煤炭技术, 1994, 20(4): 11-17, 56.
WANG Y L. Special construction technology of foreign wells and lanes[J]. China Coal, 1994, 20(4): 11-17, 56.
[16]冯敬辉. 液氮冻结中液氮消耗量的实验与理论计算[J]. 煤炭技术, 2021, 40(12): 55-58.
FENG J H. Experiment and theoretical calculation of liquid nitrogen consumption in liquid nitrogen freezing[J]. Coal Technology, 2021, 40(12): 55-58.
[17]戴逸飞, 杨平, 王宁, 等. 交叠车站下穿段MJS加固温度场变化规律研究[J]. 郑州大学学报(工学版), 2023, 44(1): 103-110.
DAI Y F, YANG P, WANG N, et al. Study on temperature field variation law of MJS reinforcement for underpass section of overlapping station[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(1): 103-110.
[18]何挺秀, 胡向东. 冻土帷幕平均温度“成冰” 公式的适应性研究[J]. 低温建筑技术, 2009, 31(5): 77-81.
HE T X, HU X D. Study on adaptability of "Chengbing" formula for average temperature of frozen soil wall[J]. Low Temperature Architecture Technology, 2009, 31(5): 77-81.
[19]何浩松, 滕继东, 张升, 等. 基于冻胀量与时间平方根之比确定冻胀分级的探讨[J]. 岩土工程学报, 2023, 45(12): 2519-2528.
HE H S, TENG J D, ZHANG S, et al. Determining frost heave classification by using ratio of frost heave to square root of time[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2519-2528.

更新日期/Last Update: 2026-01-17