[1]吴志龙,郑长江,郑树康,等.级联失效下城市交通网络可靠性评价[J].郑州大学学报(工学版),2025,46(02):82-89.[doi:10.13705/j.issn.1671-6833.2025.02.003]
 WU Zhilong,ZHENG Changjiang,ZHENG Shukang,et al.Reliability Evaluation of Urban Road Traffic Networks Under Cascading Failure[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):82-89.[doi:10.13705/j.issn.1671-6833.2025.02.003]
点击复制

级联失效下城市交通网络可靠性评价()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年02期
页码:
82-89
栏目:
出版日期:
2025-03-10

文章信息/Info

Title:
Reliability Evaluation of Urban Road Traffic Networks Under Cascading Failure
文章编号:
1671-6833(2025)02-0082-08
作者:
吴志龙1郑长江1郑树康2马庚华3陈志超1吴 非4戴津雯1
1.河海大学 土木与交通学院,江苏 南京 210024;2.河海大学 环境学院,江苏 南京 210024;3.河海大学 港口海岸与近海工程学院,江苏 南京 210024;4.河海大学 人工智能与自动化学院,江苏 南京 211100
Author(s):
WU Zhilong1 ZHENG Changjiang1 ZHENG Shukang2 MA Genghua3 CHEN Zhichao1 WU Fei4 DAI Jinwen1
1. College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, China; 2. College of Environment, Hohai University, Nanjing 210024, China; 3. College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210024, China; 4. College of Artificial Intelligence and Automation, Hohai University, Nanjing 211100, China
关键词:
复杂网络 城市交通网络 级联失效 可靠性 网络拥堵
Keywords:
complex networks urban road traffic networks cascading failure reliability network congestion
分类号:
U491.1 O157.5
DOI:
10.13705/j.issn.1671-6833.2025.02.003
文献标志码:
A
摘要:
为缓解城市交通网络拥堵问题,提高网络可靠性,基于复杂网络理论对城市交通网络级联失效现象进行研究。首先,构建加权双层城市交通网络模型,并在非线性负载-容量模型中引入失效阈值的概念量化节点失效概率,在此基础上将节点分为正常、失效和拥堵3种状态;其次,考虑到节点的时空相关性,提出了混合负载重分配策略,将失效负载分配到故障节点的相邻节点和次相邻节点;最后,以南京市某区域作为研究对象,从网络拓扑结构和节点运行质量两个角度来分析不同攻击方式和失效阈值对城市交通网络可靠性的影响。仿真结果表明:城市交通网络具有抵抗小规模节点和边失效的能力;攻击高重要性节点会加速城市交通网络崩溃,造成网络可靠性下降;在拥堵传播初期(t=40~65),增大失效阈值δ能够在一定程度上延缓级联失效扩散;当拥堵到达临界时间之后,更大的失效阈值(δ=1.6相较于δ=1.8)将引发更严重的级联失效现象。
Abstract:
To alleviate the congestion problem and improve the reliability of the urban road traffic networks, the cascading failures based on complex network theory were studied in this study. Firstly, a double-layer weighted urbon road traflic networks network model was constructed. Secondly, a failure threshold was integrated into the nonlinear load-capacity model to quantify the probability of failure. Thus, the nodes were also classified into three states: normal, failure and congestion. Additionally, a hybrid load redistribution strategy was proposed to distribute the failure load to the neighboring and sub-neighboring nodes of the failure node considering the spatio-temporal correlation. Finally, the proposed model was simulated by a case study of Nanjing to analyze the impact of different attack strategies and failure thresholds on the reliability of the urbon road traflic networks. The results showed that the urbon road traflic networks had the ability to resist small-scale node and link failures. Attacking high-importance nodes could accelerate congestion diffusion, leading to a decrease in network reliability. During the early stages of congestion propagation (t=40 to 65), increasing the failure threshold δ was able to delay the spread of cascading failure to some extent. However, after congestion reached the critical time, a higher failure threshold (δ= 1.6 compared to δ=1.8) triggered more severe cascading failure.

参考文献/References:

[1]刘伟, 陈科全, 刘玉印, 等. 前景理论下道路网络的级联失效演变[J]. 交通运输系统工程与信息, 2018, 18(1): 145-151. 

LIU W, CHEN K Q, LIU Y Y, et al. Cascading failure simulation of road network based on prospect theory[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 145-151. 
[2]BAK P, TANG C, WIESENFELD K. Self-organized criticality: an explanation of the 1/ f noise[J]. Physical Review Letters, 1987, 59(4): 381-384. 
[3]SUN L S, HUANG Y C, CHEN Y Y, et al. Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China[J]. Transportation Research Part A: Policy and Practice, 2018, 108: 12-24. 
[4]DONG H, CUI L R. System reliability under cascading failure models[J]. IEEE Transactions on Reliability, 2016, 65(2): 929-940. 
[5]MOTTER A E, LAI Y C. Cascade-based attacks on complex networks[EB/OL]. (2003-01-08)[2024-0812].https:∥doi.org/10.1103/PhysRevE.66.065102. 
[6]詹斌, 袁野, 杨世武, 等. 基于加权网络的城市轨道交通网络特性与级联失效分析[J]. 武汉理工大学学报(信息与管理工程版), 2022, 44(6): 917923, 929. 
ZHAN B, YUAN Y, YANG S W, et al. Analysis of the structural characteristics and cascading failure of urban rail transit network based on weighted network model[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2022, 44(6): 917923, 929. 
[7]MA F, SHI W J, YUEN K F, et al. Exploring the robustness of public transportation for sustainable cities: a double-layered network perspective[J]. Journal of Cleaner Production, 2020, 265: 121747. 
[8]朱玉洁. 极端气象灾害下城市公交-地铁双层网络韧性研究[D]. 西安: 长安大学, 2023. 
ZHU Y J. The resilience of bus-subway urban transport network under the extreme meteorological disasters[D]. Xi’an: Changan University, 2023.
[9]CHEN H R, ZHOU R Y, CHEN H, et al. A resilienceoriented evaluation and identification of critical thresholds for traffic congestion diffusion[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 600: 127592. 
[10] HAMEDMOGHADAM H, JALILI M, VU H L, et al. Percolation of heterogeneous flows uncovers the bottlenecks of infrastructure networks[J]. Nature Communications, 2021, 12: 1254. 
[11]潘恒彦, 张文会, 胡宝雨, 等. 城市公交-地铁加权复合网络构建及鲁棒性分析[J]. 吉林大学学报(工学版), 2022, 52(11): 2582-2591. 
PAN H Y, ZHANG W H, HU B Y, et al. Construction and robustness analysis of urban weighted subway-bus composite network[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(11): 25822591. 
[12] DOU B L, WANG X G, ZHANG S Y. Robustness of networks against cascading failures[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(11): 2310-2317. 
[13]段东立, 吴俊, 邓宏钟, 等. 基于可调负载重分配的复杂网络级联失效模型[J]. 系统工程理论与实践, 2013, 33(1): 203-208. 
DUAN D L, WU J, DENG H Z, et al. Cascading failure model of complex networks based on tunable load redistribution[J]. Systems Engineering-Theory & Practice, 2013, 33(1): 203-208. 
[14] DUAN J X, LI D Q, HUANG H J. Reliability of the traffic network against cascading failures with individuals acting independently or collectively[J]. Transportation Research Part C: Emerging Technologies, 2023, 147: 104017. 
[15] LIU Z Z, CHEN H, LIU E Z, et al. Exploring the resilience assessment framework of urban road network for sustainable cities[J]. Physica A: Statistical Mechanics and its Applications,2022. 
[16]苏飞, 董宏辉, 贾利民, 等. 基于时空相关性的城市交通路网关键路段识别[J]. 交通运输系统工程与信息, 2017, 17(3): 213-221. 
SU F, DONG H H, JIA L M, et al. Identification of critical section in urban traffic road network based on spacetime correlation[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 213-221. 
[17] ZHAO F, FU L P, ZHONG M, et al. Development and validation of improved impedance functions for roads with mixed traffic using taxi GPS trajectory data and simulation [J]. Journal of Advanced Transportation, 2020, 2020: 7523423. 
[18]段东立, 战仁军. 基于相继故障信息的网络节点重要度演化机理分析[J]. 物理学报, 2014, 63(6): 385-393. 
DUAN D L, ZHAN R J. Evolution mechanism of node importance based on the information about cascading failures in complex networks[J]. Acta Physica Sinica, 2014, 63(6): 385-393. 
[19]WANG W X, CHEN G R. Universal robustness characteristic of weighted networks against cascading failure [EB/OL]. (2008-02-01)[2024-08-12].https:∥doi. org/10.1103/PhysRevE.77.026101. 
[20] XING R R, YANG Q F, ZHENG L L. Research on cascading failure model of urban regional traffic network under random attacks[J]. Discrete Dynamics in Nature and Society, 2018, 2018: 1915695. 
[21] YANG S H, CHEN W R, ZHANG X X, et al. A graphbased method for vulnerability analysis of renewable energy integrated power systems to cascading failures[J]. Reliability Engineering & System Safety, 2021, 207: 107354. 
[22]王杰. 城市道路交通网络级联失效及控制研究[D]. 长沙: 长沙理工大学, 2014. 
WANG J. The research on cascading failure and control methods in urban road traffic networks[D]. Changsha: Changsha University of Science & Technology, 2014. 
[23] FANG X Y, LU L J, LI Y, et al. A driver-pressurestate-impact-response study for urban transport resilience under extreme rainfall-flood conditions[J]. Transportation Research Part D: Transport and Environment, 2023, 121: 103819.

相似文献/References:

[1]成连华,杨曜妍,李树刚,等.高层建筑施工安全关键风险因子及耦合效应分析[J].郑州大学学报(工学版),2024,45(06):92.[doi:10.13705/j.issn.1671-6833.2024.06.006]
 CHENG Lianhua,YANG Yaoyan,LI Shugang,et al.Analysis of Key Risk Factors and Coupling Effects of Construction Safety ofHigh-rise Buildings[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):92.[doi:10.13705/j.issn.1671-6833.2024.06.006]

更新日期/Last Update: 2025-03-13