[1]刘华东,张 雅,郝 琪,等.基于拓扑优化的类翼型扰流元件空气引射器性能分析[J].郑州大学学报(工学版),2025,46(02):104-110.[doi:10.13705/j.issn.1671-6833.2025.02.004]
 LIU Huadong,ZHANG Ya,HAO Qi,et al.Performance Analysis of Airfoil-like Spoiler Element Air Ejector Based on Topology Optimization[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):104-110.[doi:10.13705/j.issn.1671-6833.2025.02.004]
点击复制

基于拓扑优化的类翼型扰流元件空气引射器性能分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年02期
页码:
104-110
栏目:
出版日期:
2025-03-10

文章信息/Info

Title:
Performance Analysis of Airfoil-like Spoiler Element Air Ejector Based on Topology Optimization
文章编号:
1671-6833(2025)02-0104-07
作者:
刘华东 张 雅 郝 琪 孙 浩
郑州大学 机械与动力工程学院,河南 郑州 450001
Author(s):
LIU Huadong ZHANG Ya HAO Qi SUN Hao
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001,China
关键词:
类翼型扰流元件 拓扑优化 空气引射器 引射率 数值模拟
Keywords:
airfoil-like spoiler element topology optimization air ejector entrainment ratio numerical simulation
分类号:
TB65
DOI:
10.13705/j.issn.1671-6833.2025.02.004
文献标志码:
A
摘要:
针对传统空气引射器引射率较低的问题,采用拓扑优化方法对传统空气引射器进行了结构优化,并基于拓扑优化结果和减阻机理分析,提出了新型类翼型扰流元件空气引射器。利用数值模拟方法研究了新型空气引射器内部流场,分析了类翼型扰流元件高度和扰流元件与喷嘴喉部距离对引射器性能的影响。结果表明:扰流元件与引射器壁面形成二次喷嘴效应,工作流体流出喷嘴后会继续加速,压力进一步降低,与引射流体驱动压差增大,使引射率显著提升;引射率随类翼型扰流元件高度增大而增大,随着扰流元件与喷嘴喉部的距离增加,引射率先增大后减小;相比于传统引射器,新型空气引射器引射率可提高146%~224%;当类翼型扰流元件的高度为3.3 mm、扰流元件与喷嘴喉部最佳距离为0.8 mm时,引射率达到最大值2.07。
Abstract:
Aiming at the problem of low entrainment ratio of the traditional air ejector, the topology optimization method was used to optimize its structure. And an air ejector with airfoil-like spoiler element was proposed based on the topology optimization results and grag reduction mechanism analysis. The internal flow field of the ejector was studied by numerical simulation, and the influence of the height of the airfoil-like spoiler element and the distance between the element and the nozzle throat on the ejector performance was analyzed. The results showed that the secondary nozzle effect would occur after adding the spoiler element and the primary flow accelerated after flowing out of the nozzle, and the pressure was further reduced. The driving pressure difference of the primary flow was increased, the velocity difference between the two flows was reduced, and the entrainment ratio was significantly improved. The entrainment ratio increased as the height of the spoiler element increased, and the entrainment ratio increased first then decreased with the increase of the distance between the spoiler element and the nozzle throat. The entrainment ratio of the airfoil-like spoiler element ejector could increase by 146%~224% by changing the height of the airfoil-like spoiler element and the distance between the element and the nozzle throat. The entrainment ratio reached the optimal value of 2.07 when the height of the airfoil-like spoiler element was 3.3 mm and the distance between the spoiler element and the nozzle throat was 0.8 mm.

参考文献/References:

[1]KONG F S, KIM H D, JIN Y Z. Computational study of supersonic chevron ejector flows[J]. Journal of the Korean Society of Propulsion Engineers, 2013, 17(6): 89-96. 

[2]NAKAGAWA M, MARASIGAN A R, MATSUKAWA T, et al. Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigeration cycle with and without heat exchanger[J]. International Journal of Refrigeration, 2011, 34(7): 1604-1613. 
[3]SICURO B H B, MALATESTA V, PAPA R. Numerical investigation of supersonic air-to-air ejectors including design effects on entrainment efficiency[J]. Journol of Fluids Engineering, 2023, 145(1):011203. 
[4]史海路, 刘华东, 魏新利, 等. 喷嘴距对喷射器及双蒸发压缩/喷射制冷系统性能的影响研究[J]. 高校化学工程学报, 2019, 33(2): 321-328. 
SHI H L, LIU H D, WEI X L, et al. Effects of nozzle exit position on the performance of ejector and bi-evaporator compression/ejection refrigeration system[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(2): 321-328. 
[5]刘华东, 靳朝阳, 王定标, 等. 旁路结构对亚临界喷射器引射效率的影响[J]. 郑州大学学报(工学版), 2023, 44(6): 48-53. 
LIU H D, JIN Z Y, WANG D B, et al. Influence analysis of bypass structure on entrainment ratio of subcritical ejector[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(6): 48-53. 
[6]BANU J P, MANI A. Numerical studies on ejector with swirl generator[J]. International Journal of Thermal Sciences, 2019, 137: 589-600. 
[7]DUAN D L, GE H T, XI X Z, et al. Performance and mixing process investigation of a novel mixing-enhanced ejector [J]. Sustainable Energy Technologies and Assessments, 2023, 58:103322. 
[8]姚轶智, 代玉强, 张博文, 等. 动量增强型喷射器性能实验与分析[J]. 化工进展, 2019, 38(10): 4489-4496. 
YAO Y Z, DAI Y Q, ZHANG B W, et al. Performance experiment and analysis of momentum-enhanced ejector [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4489-4496. 
[9]王定标, 王帅, 张浩然, 等. 流体拓扑优化的方法及应用综述[J]. 郑州大学学报(工学版), 2023, 44 (2): 1-13. 
WANG D B, WANG S, ZHANG H R, et al. A review of methods and applications for fluid topology optimization [J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(2): 1-13. 
[10] KONTOLEONTOS E A, PAPOUTSIS-KIACHAGIAS E M, ZYMARIS A S, et al. Adjoint-based constrained topology optimization for viscous flows, including heat transfer[J]. Engineering Optimization, 2013,45(8): 941-961. 
[11] DILGEN C B, DILGEN S B, FUHRMAN D R, et al. Topology optimization of turbulent flows[J]. Mechanics and Engineering, 2018, 331: 363-393. 
[12] YOON G H. Topology optimization method with finite elements based on the k-ε turbulence model[J]. 2020, 361:112784. 
[13] ZHAO X, ZHOU M D, LIU Y C, et al. Topology optimization of channel cooling structures considering thermomechanical behavior[J]. Structural and Multidisciplinary Optimization, 2019, 59(2): 613-632. 
[14] CAI H W, GUO K, LIU H, et al. Derivative-free levelset-based multi-objective topology optimization of flow channel designs using lattice Boltzmann method[J]. Chemical Engineering Science, 2020, 231:116323. 
[15] JOO Y, LEE I, KIM S J. Efficient three-dimensional topology optimization of heat sinks in natural convection using the shape-dependent convection model[J]. International Journal of Heat and Mass Transfer, 2018, 127: 32-40.
[16]WANG D B, WU Q T, WANG G H, et al. Experimental and numerical study of plate heat exchanger based on topology optimization[J]. International Journal of Thermal Science, 2024, 195:108659. 
[17]王定标, 李昂, 吴淇涛, 等. 电子元件散热结构的拓扑优化设计[J]. 低温与超导, 2023, 51(5): 37-42. 
WANG D B, LI H, WU Q T, et al. Topology optimization design of heat dissipation structure of electronic components[J]. Cryogenics/ Refrigeration, 2023, 51(5): 37-42. 
[18]裴元帅, 王定标, 王晓亮, 等. 基于拓扑优化的风冷热沉研究[J]. 机械工程学报, 2020, 56(16): 91-97. 
PEI Y S, WANG D B, WANG X L, et al. Research on air-cooled heat sink based on topology optimization[J]. Journal of Mechanical Engineering, 2020, 56(16): 9197. 
[19] SALIM I Z, JASSIM N A. Supersonic nozzle location in steam ejector effect on the mass fraction and vacuum of second fluid[J]. International Journal of Heat and Technology, 2023, 41(5): 1121-1128. 
[20] CHONG D T, HU M Q, CHEN W X, et al. Experimental and numerical analysis of supersonic air ejector[J]. Applied Energy, 2014, 130: 679-684. 
[21] SEOK L J, HA M Y. Study on the aero-thermal topology optimization of single- and multi-fin shapes under two-dimensional external flow conditions[J]. Korean Society of Computational Fluids Engineering, 2018, 4(23): 74-83. 
[22] HAJDUK K W, ROBINSOM J C, SADOWSKI W. Robustness of regularity for the 3D convective BrinkmanForchheimer equations [J]. Journal of Mathematical Analysis and Applications, 2021, 500(1): 125058. 
[23]高伟, 张立茹, 姚慧龙, 等. 基于动网格技术水平轴风力机叶片及尾迹流场旋涡特性[J]. 排灌机械工程学报, 2023, 41(2): 172-178. 
GAO W, ZHANG L R, YAO H L, et al. Vortex characteristics of horizontal axis wind turbine blade and wake flow field based on dynamic mesh[J]. Journal of Drainage and Irrigation Machinery Engineering, 2023, 41(2): 172-178. 
[24]刘波, 侯为民, 项效镕. 高空低雷诺数二维抗分离叶型研究[J]. 西北工业大学学报, 2008, 26(6): 703-706. 
LIU B, HOU W M, XIANG X R, et al. Exploring new ideas and new methods in 2D fan/compressor cascade profile optimization design for low Reynolds number and high altitude[J]. Journal of Northwestern Polytechnical University, 2008, 26(6): 703-706. 
[25]孙翀, 田甜, 竺晓程, 等. 风力机翼型非定常流场POD和EPOD分析[J]. 上海交通大学学报, 2022, 56 (1): 45-52. 
SUN C, TIAN T, ZHU X C, et al. Analysis of POD and EPOD for unsteady flow field of wind turbine airfoil[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 45-52.

相似文献/References:

[1]房占鹏,张孟珂,李宏伟.平稳随机激励下约束阻尼结构布局优化设计[J].郑州大学学报(工学版),2020,41(05):87.[doi:10.13705/j.issn.1671-6833.2020.02.025]
 FANG Zhanpeng,ZHANG Mengke,LI Hongwei.Layout Optimization of Constrained Layer Damping Structure under Stationary Random Excitation[J].Journal of Zhengzhou University (Engineering Science),2020,41(02):87.[doi:10.13705/j.issn.1671-6833.2020.02.025]
[2]雷少敏,唐华平,朱维南..3ZX平面铣床横梁有限元分析及优化研究[J].郑州大学学报(工学版),2011,32(03):60.[doi:10.3969/j.issn.1671-6833.2011.03.015]
[3]高行山,雷平..飞机座舱减振降噪优化设计方法[J].郑州大学学报(工学版),2006,27(04):97.[doi:10.3969/j.issn.1671-6833.2006.04.024]
 Gao Xing Mountain,Lepin.Optimization design method of aircraft cabin vibration and noise reduction [J].Journal of Zhengzhou University (Engineering Science),2006,27(02):97.[doi:10.3969/j.issn.1671-6833.2006.04.024]

更新日期/Last Update: 2025-03-13