[1]GUO Z W, WANG H. A deep graph neural networkbased mechanism for social recommendations[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2776-2783. [2]MOHAMMADREZAEI M, SHIRI M E, RAHMANI A M. Identifying fake accounts on social networks based ongraph analysis and classification algorithms[J]. Security and Communication Networks, 2018, 2018: 5923156.
[3]田鸿朋, 张震, 张思源, 等. 复合可靠性分析下的不平衡数据证据分类[J]. 郑州大学学报(工学版), 2023, 44(4): 22-28.
TIAN H P, ZHANG Z, ZHANG S Y, et al. Imbalanced data evidential classification with composite reliability [J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(4): 22-28.
[4]PARK J, SONG J G, YANG E. GraphENS: neighbor-aware ego network synthesis for class-imbalanced node classification[EB/OL]. (2022-11-09)[2024-0104].https:∥specialsci.cn/detail/0425c6aa-3711-4e1fb070-d4e9bea2eb9b? resourceType=0.
[5]ZHAO T X, ZHANG X, WANG S H. GraphSMOTE: imbalanced node classification on graphs with graph neural networks[C]∥Proceedings of the 14th ACM International Conference on Web Search and Data Mining.New York: ACM, 2021: 08826.
[6]WANG K F, AN J, ZHOU M C, et al. Minority-weighted graph neural network for imbalanced node classification in social networks of Internet of people[J]. IEEE Internet of Things Journal, 2023, 10(1): 330-340.
[7]SHI S H, QIAO K, CHEN C, et al. Over-sampling strategy in feature space for graphs based class-imbalanced bot detection[C]∥Companion Proceedings of the ACM on Web Conference 2024. New York: ACM, 2024: 06900.
[8]CHEN D L, LIN Y K, ZHAO G X, et al. Topology-imbalance learning for semi-supervised node classification [EB/OL]. (2021-10-08)[2024-01-04]. http:∥arxiv.org/abs/2110.04099.
[9]SONG J, PARK J, YANG E. TAM: topology-aware margin loss for class-imbalanced node classification[EB/ OL]. (2022-06-22)[2024-01-04]. http:∥arxiv. org/abs/2206.12917.
[10] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[M]∥Lecture Notes in Computer Science. Heidelberg: Springer Berlin Heidelberg, 2005: 878-887.
[11] MATHEW J, LUO M, PANG C K, et al. Kernel-based SMOTE for SVM classification of imbalanced datasets[C] ∥IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2015: 1127-1132.
[12]WANG K F, AN J, YU Z B, et al. Kernel local outlier factor-based fuzzy support vector machine for imbalanced classification[J]. Concurrency and Computation: Practice and Experience, 2021, 33(13): 1-10.
[13] CHAWLA N V, LAZAREVIC A, HALL L O, et al. SMOTEBoost: improving prediction of the minority class in boosting[C]∥European Conference on Principles of Data Mining and Knowledge Discovery. Heidelberg: Springer, 2003: 107-119.
[14] BANDINELLI N, BIANCHINI M, SCARSELLI F. Learning long-term dependencies using layered graph neural networks[C]∥The 2010 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE, 2010: 1-8.
[15] HAMILTON W L, YING R, LESKOVEC J, et al. Inductive representationlearning on large graphs[C]∥Advances in Neural Information Processing Systems. Lang Beach: NIPS, 2017:1025-1035.
[16] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 3844-3852.
[17] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-0222)[2024-01-04]. http:∥arxiv.org/abs/1609.02907.
[18] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[19] LIU L Q, LU Y, LUO Y, et al. Detecting " smart" spammers on social network: a topic model approach [EB/OL]. (2016-06-09)[2024-01-04]. http:∥arxiv.org/abs/1604.08504.
[20] TANG L, LIU H. Relational learning via latent social dimensions[C]∥Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 817-826.
[21] BO Y, MA X L. Sampling reweighting: boosting the performance of AdaBoost on imbalanced datasets[C]∥The 2012 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE, 2012: 1-6.
[22] SHI M, TANG Y F, ZHU X G, et al. Multi-class imbalancedgraph convolutional network learning[C]∥Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama: IJCAI, 2020: 28792885.