LIU J H, PEI Y J, MEI C, et al. Waterlogging cause and disaster prevention and control of “7·20” torrential rain in Zhengzhou[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(2): 38-45.
[2]郑德凤, 高敏, 李钰, 等. 基于GIS的大连市暴雨洪涝灾害综合风险评估[J]. 河海大学学报(自然科学版), 2022, 50(3): 1-8, 22.
ZHENG D F, GAO M, LI Y, et al. Comprehensive risk assessment of rainstorm-flood disaster in Dalian City based on GIS[J]. Journal of Hohai University (Natural Sciences), 2022, 50(3): 1-8, 22.
[3]NIAZI M, NIETCH C, MAGHREBI M, et al. Storm water management model: performance review and gap analysis[J]. Journal of Sustainable Water in the Built Environment, 2017, 3(2): 10.
[4]宫永伟, 戚海军, 宋瑞宁, 等. 无率定情况下城市雨洪模拟的误差分析[J]. 中国给水排水, 2012, 28 (23): 46-50.
GONG Y W, QI H J, SONG R N, et al. Error analysis in simulation of urban stormwater runoff using default parameters[J]. China Water & Wastewater, 2012, 28 (23): 46-50.
[5]郭效琛, 李萌, 赵冬泉, 等. 基于情景模拟的城市排水管网监测点自动识别[J]. 中国给水排水, 2021, 37 (9): 130-136.
GUO X C, LI M, ZHAO D Q, et al. Automatic identification of urban drainage pipe monitoring points based on scenario simulation[J]. China Water & Wastewater, 2021, 37(9): 130-136.
[6]马彦斌, 盛旺, 李江云, 等. 基于遗传算法的SWMM模型参数率定研究[J]. 中国农村水利水电, 2020 (7): 46-49, 53.
MA Y B, SHENG W, LI J Y, et al. Parameter calibration of SWMM model based on GA[J]. China Rural Water and Hydropower, 2020(7): 46-49, 53.
[7]叶陈雷, 徐宗学, 雷晓辉, 等. 基于SWMM和InfoWorks ICM的城市街区洪涝模拟与分析[J]. 水资源保护, 2023, 39(2): 87-94.
YE C L, XU Z X, LEI X H, et al. Flood simulation and risk analysis on urban block scale based on SWMM and InfoWorks ICM[J]. Water Resources Protection, 2023, 39(2): 87-94.
[8]CAI B, YU Y X. Flood forecasting in urban reservoir using hybrid recurrent neural network[J]. Urban Climate, 2022, 42: 101086.
[9]SWATHI V, RAJU K S, VARMA M R R, et al. Automatic calibration of SWMM using NSGA-Ⅲ and the effects of delineation scale on an urban catchment[J]. Journal of Hydroinformatics, 2019, 21(5): 781-797.
[10] REED P M, HADKA D, HERMAN J D, et al. Evolutionary multiobjective optimization in water resources: the past, present, and future[J]. Advances in Water Resources, 2013, 51: 438-456.
[11] KANSO A, GROMAIRE M C, GAUME E, et al. Bayesian approach for the calibration of models: application to an urban stormwater pollution model[J]. Water Science and Technology, 2003, 47(4): 77-84.
[12] HER Y, CHAUBEY I. Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty[J]. Hydrological Processes, 2015, 29(19): 4220-4237.
[13] KELLEHER C, MCGLYNN B, WAGENER T. Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding[J]. Hydrology and Earth System Sciences, 2017, 21(7): 3325-3352.
[14] PEDERSEN A N, PEDERSEN J W, VIGUERAS-RODRIGUEZ A, et al. The Bellinge data set: open data and models for community-wide urban drainage systems research[J]. Earth System Science Data, 2021, 13(10): 4779-4798.
[15]廖如婷, 徐宗学, 叶陈雷, 等. 暴雨洪水管理模型参数敏感性分析[J]. 水力发电学报, 2022, 41(6): 11-21.
LIAO R T, XU Z X, YE C L, et al. Parameter sensitivity analysis methods of Storm Water Management Model [J]. Journal of Hydroelectric Engineering, 2022, 41 (6): 11-21.
[16]赵冬泉, 王浩正, 陈吉宁, 等. 监测技术在排水管网运行管理中的应用及分析[J]. 中国给水排水, 2012, 28(8): 11-14.
ZHAO D Q, WANG H Z, CHEN J N, et al. Application and analysis of monitoring technology in operation and management of urban drainage network[J]. China Water & Wastewater, 2012, 28(8): 11-14.
[17]陈晓燕, 张娜, 吴芳芳, 等. 雨洪管理模型SWMM的原理、参数和应用[J]. 中国给水排水, 2013, 29(4): 4-7.
CHEN X Y, ZHANG N, WU F F, et al. Stormwater management model(SWMM): principles, parameters and applications[J]. China Water & Wastewater, 2013, 29 (4): 4-7.
[18] ZAKIZADEH F, NIA A M, SALAJEGHEH A, et al. Efficient urban runoff quantity and quality modelling using SWMM model and field data in an urban watershed of Tehran metropolis [ J]. Sustainability, 2022, 14 (3): 1086.
[19] KIM S W, KWON S H, JUNG D. Development of a multiobjective automatic parameter-calibration framework for urban drainage systems[J]. Sustainability, 2022, 14 (14): 8350.
[20]WANG K, GONG Y, PENG Y L, et al. An improved fusion crossover genetic algorithm for a time-weighted maximal covering location problem for sensor siting under satellite-borne monitoring[J]. Computers and Geosciences, 2020, 136: 104406.
[21] VONACH T, KLEIDORFER M, RAUCH W, et al. An insight to the cornucopia of possibilities in calibration data collection[J]. Water Resources Management, 2019, 33 (5): 1629-1645.