[1]纪跃波,杨宇恒,蒙晨琛,等.一种压电换能器的动态阻抗匹配方法与频率跟踪[J].郑州大学学报(工学版),2025,46(03):111-117.[doi:10.13705/j.issn.1671-6833.2024.06.013]
 JI Yuebo,YANG Yuheng,MENG Chenchen,et al.A Dynamic Impedance Matching Method and Frequency Tracking of Piezoelectric Transducers[J].Journal of Zhengzhou University (Engineering Science),2025,46(03):111-117.[doi:10.13705/j.issn.1671-6833.2024.06.013]
点击复制

一种压电换能器的动态阻抗匹配方法与频率跟踪()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年03期
页码:
111-117
栏目:
出版日期:
2025-05-13

文章信息/Info

Title:
A Dynamic Impedance Matching Method and Frequency Tracking of Piezoelectric Transducers
文章编号:
1671-6833(2025)03-0111-07
作者:
纪跃波1 杨宇恒1 蒙晨琛1 彭云峰2
1.集美大学 海洋装备与机械工程学院,福建 厦门 361021;2.厦门大学 航空航天学院,福建 厦门 361102
Author(s):
JI Yuebo1 YANG Yuheng1 MENG Chenchen1 PENG Yunfeng2
1.College of Marine Equipment and Mechanical Engineering,Jimei University, Xiamen 361021,China; 2.School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
关键词:
压电换能器 T型匹配网络 动态阻抗匹配 频率追踪 数据拟合 最小二乘法
Keywords:
piezoelectric transducer T-mode matched network dynamic impedance matching frequency tracking data fitting the least squares method
分类号:
TB552
DOI:
10.13705/j.issn.1671-6833.2024.06.013
文献标志码:
A
摘要:
动态阻抗匹配技术能够提高压电换能器的输出功率和能量转换效率。现有动态阻抗匹配方法多采用智能数值寻优算法,但智能算法建模复杂、迭代时间长、计算量大,针对这一问题,提出了一种基于数据拟合的动态阻抗匹配方法,并设计了相应的可无级调节的T型阻抗匹配网络。所提方法通过工作频率微调,获取对应频率下换能器电阻、电抗分量的观测值,以最小残差平方和为判断依据,得到一组拟合程度最高的换能器等效电路参数,结合相关公式计算出匹配网络元件参数和换能器串联谐振频率,在实现换能器动态阻抗匹配的基础上,进一步实现了频率追踪功能。在Python中对动态阻抗匹配方法进行仿真,在MATLAB/Simulink中搭建仿真电路对阻抗匹配与频率追踪的效果进行仿真,结果表明:所提方法能够较为准确地得到换能器等效电路参数,匹配后的T型阻抗匹配网络两端的电压、电流信号基本同相,有功功率有了明显提升,匹配效果良好,并且相较于遗传算法匹配速度也有了显著提升。
Abstract:
Dynamic impedance matching technology can improve the output power and energy conversion efficiency of piezoelectric transducers. Most of the existing dynamic impedance matching method was intelligent numerical optimization algorithm, but the intelligent algorithm had some problems, such as complex modeling, long iteration time and large amount of calculation. In order to solve these problems, a dynamic impedance matching method based on data fitting was proposed, and the corresponding T-shaped impedance matching network was designed. The proposed method obtained the observed values of the resistance and reactance components of the transducer at the corresponding frequency by fine-tuning the operating frequency, and obtained a set of equivalent circuit parameters of the transducer with the highest degree of fitting based on the minimum residual sum of squares. Combined with the relevant formulas, the matching network element parameters and the series resonant frequency of the transducer were calculated. The frequency tracking function was further implemented. The dynamic impedance matching method was simulated in Python, and the simulation circuit was built in MATLAB/Simulink to simulate the effect of impedance matching and frequency tracking. The results showed that the proposed method could accurately obtain the equivalent circuit parameters of the transducer, the voltage and current signals at both ends of the matching Ttype impedance matching network were basically in phase, the active power was significantly improved, the matching effect was good, and the matching speed was also significantly improved compared with the genetic algorithm.

参考文献/References:

[1]张云电. 夹心式压电换能器及其应用[M]. 北京: 科学出版社, 2006. 

ZHANG Y D. Sandwich piezoelectric transducer and its application[M]. Beijing: Science Press, 2006. 
[2]WANG J D, JIANG J J, DUAN F J, et al. A high-tolerance matching method against load fluctuation for ultrasonic transducers[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 1147-1155. 
[3]KIJANKA P, PACKO P, ZHU X, et al. Three-dimensional temperature effect modelling of piezoceramic transducers used for Lamb wave based damage detection[J]. Smart Materials and Structures, 2015, 24(6): 065005. 
[4]熊智挺, 谭阳红, 易如方, 等. 射频自动阻抗匹配的分层遗传算法实现[J]. 计算机工程与应用, 2013, 49 (23): 261-265. 
XIONG Z T, TAN Y H, YI R F, et al. RF impedance automatic-matching with multilevel genetic arithmetic [J]. Computer Engineering and Applications, 2013, 49 (23): 261-265. 
[5]何龙富, 陈敏, 李加鑫, 等. 基于遗传算法在水声宽带匹配中的优化[J]. 电子设计工程, 2017, 25(2): 1-4. 
HE L F, CHEN M, LI J X, et al. Optimization of underwater acoustic broadband matching based on genetic algorithms[J]. Electronic Design Engineering, 2017, 25 (2): 1-4. 
[6]BRIONES E, RUIZ-CRUZ R, BRIONES J, et al. Particle swarm optimization of nanoantenna-based infrared detectors[J]. Optics Express, 2018, 26(22): 2848428496. 
[7]LI Y, DONG W H, YANG Q X, et al. An automatic impedance matching method based on the feedforward-backpropagation neural network for a WPT system[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3963-3972. 
[8]王磊, 王时英. 压电换能器T型匹配电路的优化[J]. 压电与声光, 2014, 36(5): 861-864. 
WANG L, WANG S Y. Optimization of T-type matching circuits in piezoelectric transducer[J]. Piezoelectrics & Acoustooptics, 2014, 36(5): 861-864. 
[9]YANG Y H, WEI X Y, YAO W Q, et al. Broadband electrical impedance matching of sandwiched piezoelectric ultrasonic transducers for structural health monitoring of the rail in-service[J]. Sensors and Actuators A: Physical, 2023, 364: 114819. 
[10]姚震, 莫毅强, 罗子伦, 等. 非线性工作状态压电换能器匹配技术[J]. 应用声学, 2023, 42(2): 379-385. 
YAO Z, MO Y Q, LUO Z L, et al. Matching technology of piezoelectric transducer in nonlinear working state[J]. Journal of Applied Acoustics, 2023, 42(2): 379-385. 
[11] ZHANG H J, WANG F J, TIAN Y L, et al. Electrical matching of low power piezoelectric ultrasonic transducers for microelectronic bonding[J]. Sensors and Actuators A: Physical, 2013, 199: 241-249. 
[12] STRUTZ T. 数据拟合与不确定度: 加权最小二乘拟合及其推广[M]. 北京: 国防工业出版社, 2019.
STRUTZ T. Data fitting and uncertainty[M]. Beijing: National Defense Industry Press, 2019. 
[13] XU W, CHEN W, LIANG Y J. Feasibility study on the least square method for fitting non-Gaussian noise data [J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1917-1930. 
[14]王翥, 刘春龙, 罗清华. 超声波传感器特性分析与测试方法的研究[J]. 郑州大学学报(工学版), 2020, 41(2): 13-18. 
WANG Z, LIU C L, LUO Q H. Research on ultrasonic sensors characteristics and testing method[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41 (2): 13-18. 
[15] SABERKARI A, ZIABAKHSH S, MARTINEZ H, et al. Active inductor-based tunable impedance matching network for RF power amplifier application[J]. Integration, the VLSI Journal, 2016, 52(C): 301-308. 
[16]东栋. 超声电源换能振动系统的阻抗匹配研究[J]. 电气应用, 2006, 25(9): 125-128. 
DONG D. Impedance match of transducer system in ultrasonic frequency power supply[J]. Electrotechnical Application, 2006, 25(9): 125-128. 
[17]吴鹏. 基于气隙式可控电抗器的超声换能器阻抗动态匹配研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. 
WU P. Study on dynamic matching of ultrasonic transducer based on air-gap comtrollable reactor[D]. Harbin: Harbin Institute of Technology, 2020. 
[18]李辉, 金晓萍, 李丽芬. Python程序设计与数据分析基础[M]. 北京: 清华大学出版社, 2023. 
LI H, JIN X P, LI L F. Python programming and data analysis foundation[M]. Beijing: Tsinghua University Press, 2023. 
[19] LI J Q, HUANG W C, SHAO W W, et al. An electrical impedance matching method of dual-frequency transducers for ultrasound internal imaging[J]. Measurement, 2023, 221: 113413. 
[20]汪洪波, 黄稳, 陈长琦. 基于遗传算法的真空磁控溅射射频阻抗匹配仿真研究[J]. 真空科学与技术学报, 2011, 31(4): 500-504. 
WANG H B, HUANG W, CHEN C Q. Simulation of RF impedance matching of magnetron sputtering based on genetic algorithm[J]. Chinese Journal of Vacuum Science and Technology, 2011, 31(4): 500-504.

更新日期/Last Update: 2025-05-22