[1]刘艳红,苗亚洲,张 宽,等.面向肺部介入的光纤光栅三维力传感器设计[J].郑州大学学报(工学版),2025,46(01):9-16.[doi:10.13705/j.issn.1671-6833.2025.01.012]
 LIU Yanhong,MIAO Yazhou,ZHANG Kuan,et al.Design of Three-dimensional Force Sensor Based on FBG for Pulmonary Intervention[J].Journal of Zhengzhou University (Engineering Science),2025,46(01):9-16.[doi:10.13705/j.issn.1671-6833.2025.01.012]
点击复制

面向肺部介入的光纤光栅三维力传感器设计()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年01期
页码:
9-16
栏目:
出版日期:
2024-12-23

文章信息/Info

Title:
Design of Three-dimensional Force Sensor Based on FBG for Pulmonary Intervention
文章编号:
1671-6833(2025)01-0009-08
作者:
刘艳红 苗亚洲 张 宽 陈鹏冲 霍本岩
郑州大学 电气与信息工程学院,河南 郑州 450001
Author(s):
LIU Yanhong MIAO Yazhou ZHANG Kuan CHEN Pengchong HUO Benyan
School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
柔性机器人 光纤光栅 肺部介入手术 温度补偿 三维力
Keywords:
flexible robot FBG pulmonary interventional surgery temperature compensation three-dimensional force
分类号:
TP212
DOI:
10.13705/j.issn.1671-6833.2025.01.012
文献标志码:
A
摘要:
支气管曲折复杂的环境对肺部介入手术中柔性机器人末端力感知造成了较大的困难,现有的力传感器难以满足其要求。根据肺部介入手术的需求,为柔性机器人提供精确、实时的末端力反馈,设计了分段式光纤光栅三维力传感器,并对其结构进行了有限元仿真分析与优化,设计了解耦算法,完成传感器内部4根光栅受到三维力时波长变化的解耦,从而实现对横向力与轴向力的检测。设置温补光栅进行温度补偿,设计了补偿策略,降低了温度变化对传感精度的影响。最后,对所设计的光纤光栅力传感器进行了校准与实验验证。实验结果表明:设计的光纤光栅三维力传感器的横向力灵敏度系数分别为431.3 pm/N与517.6 pm/N,轴向力灵敏度系数为153.5 pm/N,均方根误差分别为0.026、0.025、0.041 N。
Abstract:
The tortuous and complex environment of the tracheobronchial tree poses significant challenges for force sensing at the distal end of flexible robots used in pulmonary interventional surgeries, with conventional force sensors often falling short of the required performance. To address the specific needs of these procedures and to equip flexible robots with precise and real-time force feedback, a segmented three-dimensional force fiber Bragg grating (FBG) sensor was designed. The sensor′s structure was meticulously analyzed and optimized through finite element simulations, and a decoupling algorithm was devised to separate the wavelength shifts of the four internal gratings with three-dimensional forces, facilitating independent detection of lateral and axial forces. In order to mitigate the effects of temperature variations on sensing accuracy, temperature-compensating gratings were incorporated into the design, accompanied by a carefully tailored compensation strategy. Following this, the designed FBG force sensor underwent calibration and experimental validation. The outcomes revealed that the sensor exhibited lateral force sensitivities of 431.3 pm/N and 517.6 pm/N, an axial force sensitivity of 153.5 pm/N, and root mean square errors of 0.026 N, 0.025 N, and 0.041 N for the respective force dimensions.

参考文献/References:

[1]STAUB C, ONO K, MAYER H, et al. Remote minimally invasive surgery-haptic feedback and selective automation in medical robotics[J]. Applied Bionics and Biomechanics, 2011, 8(2): 221-236. 

[2]FONTANELLI G A, BUONOCORE L R, FICUCIELLO F, et al. An external force sensing system for minimally invasive robotic surgery[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1543-1554. 
[3]DO T N, TJAHJOWIDODO T, LAU M W S, et al. A new approach of friction model for tendon-sheath actuated surgical systems: nonlinear modelling and parameter identification[J]. Mechanism and Machine Theory, 2015, 85: 14-24. 
[4]HAOUCHINE N, KUANG W, COTIN S, et al. Visionbased force feedback estimation for robot-assisted surgery using instrument-constrained biomechanical three-dimensional maps[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2160-2165. 
[5]GAO A Z, ZHOU Y Y, CAO L, et al. Fiber Bragg grating-based triaxial force sensor with parallel flexure hinges [J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8215-8223. 
[6]ZHANG L S, GUO S X, YU H D, et al. Performance evaluation of a strain-gauge force sensor for a haptic robotassisted catheter operating system[J]. Microsystem Technologies, 2017, 23(10): 5041-5050. 
[7]KIM U, KIM Y B, SEOK D Y, et al. A new type of surgical forceps integrated with three-axial force sensor for minimally invasive robotic surgery[C]∥2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Piscataway: IEEE, 2016: 135-137. 
[8]杜志叶, 赵鹏飞, 伍川, 等. 基于光纤传感器的输电杆塔角钢应变在线监测研究[J]. 郑州大学学报(工学版), 2022, 43(6): 49-56. 
DU Z Y, ZHAO P F, WU C, et al. Research on online monitoring of angle steel strain of transmission tower based on FBG sensor[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(6): 49-56. 
[9]JIANG Q, LI J H, MASOOD D. Fiber-optic-based force and shape sensing in surgical robots: a review[J]. Sensor Review, 2023, 43(2): 52-71. 
[10] AKINYEMI T O, OMISORE O M, LU G, et al. Toward a fiber Bragg grating-based two-dimensional force sensor for robot-assisted cardiac interventions[J]. IEEE Sensors Letters, 2022, 6(1): 5000104. 
[11] LI Y Z, CHEN F Y, GUO T, et al. Sensitivity enhancement of fiber Bragg grating accelerometer based on short grating[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 7001705. 
[12] BIAZI-NETO V, MARQUES C A F, FRIZERA-NETO A, et al. FBG-embedded robotic manipulator tool for structural integrity monitoring from critical strain-stress pair estimation[J]. IEEE Sensors Journal, 2022, 22 (6): 5695-5702.
[13] HE X C, HANDA J, GEHLBACH P, et al. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(2): 522-534. 
[14] ZHANG H, YI H R, FAN Z B, et al. An FBG-based 3DOF force sensor with simplified structure for retinal microsurgery[J]. IEEE Sensors Journal, 2022, 22(15): 14911-14920. 
[15] LAI W J, CAO L, TAN R X, et al. force sensing with 1 mm fiber Bragg gratings for flexible endoscopic surgical robots[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(1): 371-382. 
[16] LOU Y Y, YANG T Y, LUO D, et al. A novel catheter distal contact force sensing for cardiac ablation based on fiber Bragg grating with temperature compensation[J]. Sensors, 2023, 23(5): 2866. 
[17] SHI C Y, LI T L, REN H L. A millinewton resolution fiber Bragg grating-based catheter two-dimensional distal force sensor for cardiac catheterization[J]. IEEE Sensors Journal, 2018, 18(4): 1539-1546. 
[18] LI T L, SHI C Y, REN H L. Three-dimensional catheter distal force sensing for cardiac ablation based on fiber Bragg grating[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5): 2316-2327. 
[19] NEUZIL P, REDDY V Y, KAUTZNER J, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study[J]. Circulation: Arrhythmia and Electrophysiology, 2013, 6(2): 327-333.

更新日期/Last Update: 2024-12-30