[1]STAUB C, ONO K, MAYER H, et al. Remote minimally invasive surgery-haptic feedback and selective automation in medical robotics[J]. Applied Bionics and Biomechanics, 2011, 8(2): 221-236. [2]FONTANELLI G A, BUONOCORE L R, FICUCIELLO F, et al. An external force sensing system for minimally invasive robotic surgery[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1543-1554.
[3]DO T N, TJAHJOWIDODO T, LAU M W S, et al. A new approach of friction model for tendon-sheath actuated surgical systems: nonlinear modelling and parameter identification[J]. Mechanism and Machine Theory, 2015, 85: 14-24.
[4]HAOUCHINE N, KUANG W, COTIN S, et al. Visionbased force feedback estimation for robot-assisted surgery using instrument-constrained biomechanical three-dimensional maps[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2160-2165.
[5]GAO A Z, ZHOU Y Y, CAO L, et al. Fiber Bragg grating-based triaxial force sensor with parallel flexure hinges [J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8215-8223.
[6]ZHANG L S, GUO S X, YU H D, et al. Performance evaluation of a strain-gauge force sensor for a haptic robotassisted catheter operating system[J]. Microsystem Technologies, 2017, 23(10): 5041-5050.
[7]KIM U, KIM Y B, SEOK D Y, et al. A new type of surgical forceps integrated with three-axial force sensor for minimally invasive robotic surgery[C]∥2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Piscataway: IEEE, 2016: 135-137.
[8]杜志叶, 赵鹏飞, 伍川, 等. 基于光纤传感器的输电杆塔角钢应变在线监测研究[J]. 郑州大学学报(工学版), 2022, 43(6): 49-56.
DU Z Y, ZHAO P F, WU C, et al. Research on online monitoring of angle steel strain of transmission tower based on FBG sensor[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(6): 49-56.
[9]JIANG Q, LI J H, MASOOD D. Fiber-optic-based force and shape sensing in surgical robots: a review[J]. Sensor Review, 2023, 43(2): 52-71.
[10] AKINYEMI T O, OMISORE O M, LU G, et al. Toward a fiber Bragg grating-based two-dimensional force sensor for robot-assisted cardiac interventions[J]. IEEE Sensors Letters, 2022, 6(1): 5000104.
[11] LI Y Z, CHEN F Y, GUO T, et al. Sensitivity enhancement of fiber Bragg grating accelerometer based on short grating[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 7001705.
[12] BIAZI-NETO V, MARQUES C A F, FRIZERA-NETO A, et al. FBG-embedded robotic manipulator tool for structural integrity monitoring from critical strain-stress pair estimation[J]. IEEE Sensors Journal, 2022, 22 (6): 5695-5702.
[13] HE X C, HANDA J, GEHLBACH P, et al. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(2): 522-534.
[14] ZHANG H, YI H R, FAN Z B, et al. An FBG-based 3DOF force sensor with simplified structure for retinal microsurgery[J]. IEEE Sensors Journal, 2022, 22(15): 14911-14920.
[15] LAI W J, CAO L, TAN R X, et al. force sensing with 1 mm fiber Bragg gratings for flexible endoscopic surgical robots[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(1): 371-382.
[16] LOU Y Y, YANG T Y, LUO D, et al. A novel catheter distal contact force sensing for cardiac ablation based on fiber Bragg grating with temperature compensation[J]. Sensors, 2023, 23(5): 2866.
[17] SHI C Y, LI T L, REN H L. A millinewton resolution fiber Bragg grating-based catheter two-dimensional distal force sensor for cardiac catheterization[J]. IEEE Sensors Journal, 2018, 18(4): 1539-1546.
[18] LI T L, SHI C Y, REN H L. Three-dimensional catheter distal force sensing for cardiac ablation based on fiber Bragg grating[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5): 2316-2327.
[19] NEUZIL P, REDDY V Y, KAUTZNER J, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study[J]. Circulation: Arrhythmia and Electrophysiology, 2013, 6(2): 327-333.