[1]姜 欣,段世杰,金 阳,等.基于变动碳排放强度的电碳联合市场滚动出清模型[J].郑州大学学报(工学版),2024,45(04):125-132.[doi:10.13705/ j.issn.1671-6833.2024.04.014]
 JIANG Xin,DUAN Shijie,JIN Yang,et al.Rolling Clearing Model of Electro-Carbon Joint Market Based on Variable Carbon Emission Intensity[J].Journal of Zhengzhou University (Engineering Science),2024,45(04):125-132.[doi:10.13705/ j.issn.1671-6833.2024.04.014]
点击复制

基于变动碳排放强度的电碳联合市场滚动出清模型()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年04期
页码:
125-132
栏目:
出版日期:
2024-06-16

文章信息/Info

Title:
Rolling Clearing Model of Electro-Carbon Joint Market Based on Variable Carbon Emission Intensity
文章编号:
1671-6833(2024)04-0125-08
作者:
姜 欣 段世杰 金 阳 尚静怡
郑州大学 电气与信息工程学院,河南 郑州 450001
Author(s):
JIANG Xin DUAN Shijie JIN Yang SHANG Jingyi
School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
电碳联合市场 碳排放强度曲线 集中碳交易模式 出清机制 分时碳价格
Keywords:
electro-carbon joint market carbon emission intensity curve centralized carbon trading mechanism clearance mechanism time segment carbon price
分类号:
TM732
DOI:
10.13705/ j.issn.1671-6833.2024.04.014
文献标志码:
A
摘要:
针对电力市场与碳市场交易物的物理约束不同,交易时间尺度差异较大,2个市场难以有效融合的问题, 提出了一种基于变动碳排放强度以及集中碳交易模式的电碳联合市场滚动出清模型。模型内通过考虑机组的碳 排放强度-负荷率区间增强了电力市场和碳市场之间的互动性,同时基于集中碳交易模式的联合市场滚动出清缩 小碳市场的交易时间尺度直至与电力市场同步,更好地发现不同时段下碳排放权的价值。通过算例模拟分析随着 中国碳排放基准值的进一步减小以及新能源渗透率的提高对于各机组的影响。结果表明:在所提模型中随着碳排 放基准值的减小,高碳排放机组的平均碳成本提高了46%,低碳机组的平均碳收益增加了27%,新能源机组渗透率 的提高使得高容量火电机组的平均碳成本降低了5.53%,因此所提模型可有效促进系统向清洁方向转化。相较于 传统阶梯碳定价机制,所提模型中高碳排放机组的平均碳成本降低了6.13%,可间接提高高碳排放机组参与碳市 场的积极性。
Abstract:
Due to the difference of the physical constraints of traded goods and trading time scale in the electricity market and the carbon market are different, it was difficult for the two markets to integrate effectively. Aiming at the problem, a rolling clearing model of the electro-carbon joint market based on the variable carbon emission inten sity and the centralized carbon trading mechanism was proposed. In the proposed model, the interaction between the electricity market and the carbon market was enhanced by considering the carbon intensity and load rate interval of the unit. Meanwhile, the rolling clearance of the joint market based on the centralized carbon trading mechanism reduced the trading time scale of the carbon market to synchronize with the electricity market, making it′s better to found the value of carbon emission rights in different periods. With the further reduction of China′s carbon emission baseline value and the increase of new energy penetration rate, the impact on each unit was analyzed by simulation examples. It was verified that in the proposed model, with the reduction of the carbon emission baseline value, the average carbon cost of high-carbon emission units increased by 46%, the average carbon income of low-carbon e mission units increased by 27%, and the increase in the penetration rate of new energy units reduced the average carbon cost of the large-capacity thermal power units by 5.53%. Therefore, the proposed model could effectively promote the transformation of the clean direction of the system. Compared with the traditional stepped carbon pricing mechanism, the average carbon cost of high-carbon emission units in the proposed model was reduced by 6.13%, which could indirectly improve the enthusiasm of high-carbon emission units to participate in the carbon market.

参考文献/References:

[1] 王科, 李世龙, 李思阳, 等. 中国碳市场回顾与最优 行业纳入顺序展望(2023)[J]. 北京理工大学学报 (社会科学版), 2023, 25(2): 36-44. 

WANG K, LI S L, LI S Y, et al. Reviews of China′s carbon market and prospects of its optimal rolling out plan (2023)[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2023, 25(2): 36-44. 
[2] 吉斌, 昌力, 陈振寰, 等. 基于区块链技术的电力碳 排放权交易市场机制设计与应用[J]. 电力系统自动 化, 2021, 45(12): 1-10. 
JI B, CHANG L, CHEN Z H, et al. Blockchain technol ogy based design and application of market mechanism for power carbon emission allowance trading[J]. Automation of Electric Power Systems, 2021, 45(12): 1-10. 
[3] 邓盛盛, 陈皓勇, 肖东亮, 等. 发电商参与碳市场与 电力中长期市场联合决策模型[J]. 电力系统保护与 控制, 2022, 50(22): 1-10.
 DENG S S, CHEN H Y, XIAO D L, et al. A joint decision making model for power generators to participate in the carbon market and the medium-and long-term power markets[J]. Power System Protection and Control, 2022, 50(22): 1-10. 
[4] 谷万江, 王飞, 田小蕾, 等. 考虑储能及碳交易成本 的电热联合系统优化调度策略[J]. 电网与清洁能源, 2020, 36(7): 109-118. 
GU W J, WANG F, TIAN X L, et al. Optimal schedu ling strategy for electric-thermal combined system consid ering energy storage and carbon trading cost[J]. Power System and Clean Energy, 2020, 36(7): 109-118. 
[5] 曹建伟, 穆川文, 孙可, 等. 考虑碳交易的区域电网 风光储容量配置优化方法[J]. 武汉大学学报(工学 版), 2020, 53(12): 1091-1096, 1105. 
CAO J W, MU C W, SUN K, et al. Optimal configura tion method of wind-photovoltaic-storage capacities for re gional power grid considering carbon trading[J]. Engi neering Journal of Wuhan University, 2020, 53(12): 1091-1096, 1105. 
[6] 郝婷, 樊小朝, 王维庆, 等. 阶梯式碳交易下考虑源 荷不确定性的储能优化配置[J]. 电力系统保护与控 制, 2023, 51(1): 101-112. 
HAO T, FAN X C, WANG W Q, et al. Optimal configu ration of energy storage considering the source-load uncer tainty under ladder-type carbon trading[J]. Power Sys tem Protection and Control, 2023, 51(1): 101-112. 
[7] 赵毅, 王维庆, 闫斯哲. 考虑阶梯型碳交易的风光储 联合系统分布鲁棒优化调度[J]. 电力系统保护与控 制, 2023, 51(6): 127-136. 
ZHAO Y, WANG W Q, YAN S Z. Distributionally ro bust optimization scheduling of a joint wind-solar-storage system considering step-type carbon trading[J]. Power System Protection and Control, 2023, 51(6): 127-136. 
[8] 刘光宇, 韩东升, 刘超杰, 等. 考虑双重需求响应及 阶梯型碳交易的综合能源系统双时间尺度优化调度 [J]. 电力自动化设备, 2023, 43(5): 218-225. 
LIU G Y, HAN D S, LIU C J, et al. Dual time scale opti mal scheduling of integrated energy system considering du al demand response and stepped carbon trading[J]. Elec tric Power Automation Equipment, 2023, 43(5): 218-225. 
[9] 张晓辉, 刘小琰, 钟嘉庆. 考虑奖惩阶梯型碳交易和 电-热转移负荷不确定性的综合能源系统规划[J]. 中 国电机工程学报, 2020, 40(19): 6132-6142. 
ZHANG X H, LIU X Y, ZHONG J Q. Integrated energy system planning considering a reward and punishment lad der-type carbon trading and electric-thermal transfer load uncertainty[J]. Proceedings of the CSEE, 2020, 40 (19): 6132-6142. 
[10]张笑演, 王橹裕, 黄蕾, 等. 考虑扩展碳排放流和碳 交易议价模型的园区综合能源优化调度[J]. 电力系 统自动化, 2023, 47(9): 34-46. 
ZHANG X Y, WANG L Y, HUANG L, et al. Optimal dispatching of park-level integrated energy system consid ering augmented carbon emission flow and carbon trading bargain model[J]. Automation of Electric Power Sys tems, 2023, 47(9): 34-46. 
[11]杨毅, 易文飞, 王晨清, 等. 基于碳排放流理论的园 区综合能源系统低碳经济调度[J]. 电力建设, 2022, 43(11): 33-41. 
YANG Y, YI W F, WANG C Q, et al. Low-carbon eco nomic dispatching of park integrated energy system apply ing carbon emission flow theory[J]. Electric Power Con struction, 2022, 43(11): 33-41. 
[12]檀勤良, 丁毅宏, 魏咏梅, 等. 碳交易及模糊预算下 火电企业碳减排最优策略研究[J]. 电网技术, 2019, 43(10): 3707-3715. 
TAN Q L, DING Y H, WEI Y M, et al. Research on op timal strategy of carbon emission reduction for thermal power enterprises under carbon trading and fuzzy budget [J]. Power System Technology, 2019, 43(10): 3707-3715. 
[13]王秀丽, 赵凤江, 刘豹, 等. 计及碳减排收益的光储 联合电站参与电力市场投标策略研究[J]. 电网技术, 2022, 46(11): 4208-4218. 
WANG X L, ZHAO F J, LIU B, et al. Bidding strategy of photovoltaic storage union power station considering benefits of carbon emission reduction[J]. Power System Technology, 2022, 46(11): 4208-4218. 
[14]中华人民共和国生态环境部.《2021、2022年度全国碳 排放权交易配额总量设定与分配实施方案(征求意见 稿)》[EB/OL].(2022-10-31)[2024-02-18].https: ∥big5. mee. gov. cn/gate/big5/www. mee. gov. cn/ xxgk2018/xxgk/xxgk06/202211/W020221103336161991 455.pdf. 
Ministry of Ecology and Environment of the Peoples′ Re public of China. Implementation plan for setting and dis tributing the total amount of national carbon emission trading quotas for 2021 and 2022 (draft for comments) [EB/OL]. (2022-10-31)[2024-02-18]. https:∥ big5.mee. gov. cn/gate/big5/www.mee. gov. cn/xxgk201 8/xxgk/xxgk06/202211/W020221103336161991455.pdf. 
[15]卢志刚, 郭凯, 闫桂红, 等. 考虑需求响应虚拟机组 和碳交易的含风电电力系统优化调度[J]. 电力系统 自动化, 2017, 41(15): 58-65. 
LU Z G, GUO K, YAN G H, et al. Optimal dispatch of power system integrated with wind power considering vir tual generator units of demand response and carbon trading[J]. Automation of Electric Power Systems, 2017, 41(15): 58-65. 
[16]刘福国, 蒋学霞, 李志. 燃煤发电机组负荷率影响供 电煤耗的研究[J]. 电站系统工程, 2008, 24(4): 47 49. 
LIU F G, JIANG X X, LI Z. Investigation on affects of gen erator load on coal consumption rate in fossil power plant [J]. Power System Engineering, 2008, 24(4): 47-49.
[17]于洪海, 尹卓超, 曲立涛, 等. 基于经验拟合法的燃 煤电厂二氧化碳排放特征分析[J]. 能源与环保, 2018, 40(12): 135-138. 
YU H H, YIN Z C, QU L T, et al. Analysis of carbon dioxide emission characteristics of coal-fired power plants with empirical fitting[J]. China Energy and Environmen tal Protection, 2018, 40(12): 135-138. 
[18]马学礼, 王笑飞, 孙希进, 等. 燃煤发电机组碳排放强 度影响因素研究[J]. 热力发电, 2022, 51(1): 190-195. 
MA X L, WANG X F, SUN X J, et al. Influence factors of carbon emission intensity of coal-fired power units[J]. Thermal Power Generation, 2022, 51(1): 190-195. 
[19]王换换. 新能源发电成本对价格补贴的影响研究 [D]. 西安: 西安石油大学, 2019. 
WANG H H. Research on the influence of new energy generation cost on price subsidy[D].Xi’an: Xi’an Shiy ou University, 2019. 
[20]刘科, 杨兴森, 王太, 等. 基于实时监测的燃煤机组碳 排放特性研究[J]. 热力发电, 2022, 51(10): 47-53. 
LIU K, YANG X S, WANG T, et al. Research on car bon emission characteristics of coal-fired units based on real-time monitoring[J]. Thermal Power Generation, 2022, 51(10): 47-53. 
[21] YANG Y Y, LIU J C, XU X, et al. Cooperative trading strategy of carbon emitting power generation units partici pating in carbon and electricity markets[J]. Frontiers in Energy Research, 2022, 10: 977509.

更新日期/Last Update: 2024-06-14