[1]赵 冬,李亚瑞,王文相,等.基于动态融合注意力机制的电力负荷缺失数据填充模型[J].郑州大学学报(工学版),2025,46(02):111-118.[doi:10.13705/j.issn.1671-6833.2024.05.004]
 ZHAO Dong,LI Yarui,WANG Wenxiang,et al.Power Load Missing Data Imputation Model Based on Dynamic Fusion Attention Mechanism[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):111-118.[doi:10.13705/j.issn.1671-6833.2024.05.004]
点击复制

基于动态融合注意力机制的电力负荷缺失数据填充模型()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年02期
页码:
111-118
栏目:
出版日期:
2025-03-10

文章信息/Info

Title:
Power Load Missing Data Imputation Model Based on Dynamic Fusion Attention Mechanism
文章编号:
1671-6833(2025)02-0111-08
作者:
赵 冬1 李亚瑞2 王文相3 宋 伟4
1.中原工学院 软件学院,河南 郑州 450007;2.中原工学院 计算机学院,河南 郑州 451191;3.许昌许继软件技术有限公司,河南 许昌 461000;4.郑州大学 计算机与人工智能学院,河南 郑州 450001
Author(s):
ZHAO Dong 1 LI Yarui 2 WANG Wenxiang3 SONG Wei4
1.School of Software, Zhongyuan University of Technology, Zhengzhou 450007, China; 2.School of Computer, Zhongyuan University of Technology, Zhengzhou 451191, China; 3.Xuchang Xuji Software Technology Co., Ltd., Xuchang 461000; 4.School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
关键词:
缺失值填充 注意力机制 电力负荷 时序特征
Keywords:
missing data imputation attention mechanism power load time series features
分类号:
TP183
DOI:
10.13705/j.issn.1671-6833.2024.05.004
文献标志码:
A
摘要:
为了提高电力负荷数据的缺失值填充精度,保障后续数据分析与应用的高效进行,首先,提出一种基于动态融合注意力机制的填充模型(DFAIM),该模型由注意力机制模块和动态加权融合模块构成,通过注意力机制模块的两种不同注意力机制挖掘特征与时间戳之间的深层关联;其次,通过动态加权融合模块将可学习的权重赋予注意力机制模块的两个输出以得到特征表示;最后,利用特征表示来替换缺失位置的值,从而得到准确的填充结果。使用纽约市某地区的气象及负荷数据集及UCI电力负荷数据集对提出的模型进行验证,实验结果表明:相较于统计学、机器学习和深度学习填充模型,DFAIM在评价指标MAE、RMSE和MRE上均具有一定优势。
Abstract:
In order to improve the imputation accuracy of power load missing value data and guarantee the efficiency of subsequent data analysis and application, firstly, a imputation model based on dynamic fusion of attention mechanism dynamic fusion of attention mechanism imputation model (DFAIM) was proposed. The model consisted of an attention mechanism module and a dynamic weighted fusion module, where the deep correlation between features and timestamps was mined through the two different attention mechanisms of the attention mechanism module. Secondly, feature representations were obtained by assigning learnable weights to the two outputs of the attention mechanism module through the dynamic weighted fusion module. Finally, replacing the values of the missing locations with the obtained feature representations to obtain the imputed values. The proposed model was validated using the meteorological and load dataset and the UCI electric load dataset for an area in New York City, and the experimental results showed that DFAIM had certain advantages in evaluating metrics such as MAE, RMSE, and MRE compared to statistics, machine learning, and deep learning models imputation models.

参考文献/References:

[1]朱俊丞, 杨之乐, 郭媛君, 等. 深度学习在电力负荷预测中的应用综述[J]. 郑州大学学报(工学版), 2019, 40(5): 13-22. 

ZHU J C, YANG Z L, GUO Y J, et al. Deep learning applications in power system load forecasting: a survey [J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(5): 13-22. 
[2]SUO Q L, ZHONG W D, XUN G X, et al. GLIMA: global and local time series imputation with multi-directional attention learning[C]∥2020 IEEE International Conference on Big Data (Big Data). Piscataway: IEEE, 2020: 798-807.
[3]LIN W C, TSAI C F. Missing value imputation: a review and analysis of the literature (2006—2017)[J]. Artificial Intelligence Review, 2020, 53(2): 1487-1509. 
[4]MALARVIZHI M R. K-NN classifier performs better than K-means clustering in missing value imputation[J]. IOSR Journal of Computer Engineering, 2012, 6(5): 12-15. 
[5]SMOLA A J, VISHWANATHAN S V N, HOFMANN T. Kernel methods for missing variables[J]. Society for Artificial Intelligence and Statistics, 2005: 325-332. 
[6]徐岩, 张晓, 周兴华, 等. 基于Prophet-LightGBM的台区短期负荷预测方法[J]. 华北电力大学学报(自然科学版), 2024,51(6):13-19. 
XU Y, ZHANG X, ZHOU X H, et al. The short-term load forecasting method of transformer based on ProphetLightGBM[J]. Journal of North China Electric Power University (Natural Science Edition), 2024,51(6):13-19. 
[7]张颖超, 成金杰, 邓华, 等. 基于相似日和特征提取的短期风电功率预测[J]. 郑州大学学报(工学版), 2020, 41(5): 44-49. 
ZHANG Y C, CHENG J J, DENG H, et al. Short-term wind power prediction based on similar day and feature extraction[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(5): 44-49. 
[8]CAO W, WANG D, LI J, et al. BRITS: bidirectional recurrent imputation for time series[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. NewYork: ACM, 2018: 6776-6786. 
[9]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010. 
[10] DU W J, CÔTÉ D, LIU Y. SAITS: self-attention-based imputation for time series[J]. Expert Systems with Applications, 2023, 219: 119619. 
[11]周远翔, 林孟龙, 陈健宁, 等. 基于自注意力生成对抗网络的电力设备在线监测缺失数据填补[J]. 高电压技术, 2023, 49(5): 1795-1809. 
ZHOU Y X, LIN M L, CHEN J N, et al. Missing data imputation for online monitoring of power equipment based on self-attention generative adversarial networks[J]. High Voltage Engineering, 2023, 49(5): 1795-1809. 
[12] JÄGER S, ALLHORN A, BIEßMANN F. A benchmark for data imputation methods[J]. Frontiers in Big Data, 2021, 4: 693674. 
[13] AHN H, SUN K, PIO KIM K. Comparison of missing data imputation methods in time series forecasting[J]. Computers, Materials & Continua, 2022, 70 (1): 767-779. 
[14]马思远, 焦佳辉, 任晟岐, 等. 基于注意力机制的城市多元空气质量数据缺失值填充[J]. 计算机工程与科学, 2023, 45(8): 1354-1364. 
MA S Y, JIAO J H, REN S Q, et al. Missing value filling for multi-variable urban air quality data based on attention mechanism[J]. Computer Engineering & Science, 2023, 45(8): 1354-1364. 
[15] HAN K, WANG Y H, CHEN H T, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (1): 87-110. 
[16] TRINDADE A. Electricity load diagrams 2011—2014 data set[EB/OL]. (2015-12-03)[2024-08-05]. https: ∥archive. ics.uci. edu/ml/datasets/Electricity Load Diagrams20112014. 
[17] Microsoft. Neural network intellgence[EB/OL]. (201706-01) [2024-08-05]. https:∥github. com/ microsoft/nni. 
[18] BERGSTRA J, BENGIO Y. Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research, 2012, 13: 281-305. 
[19] YOON J, ZAME W R, VAN DER SCHAAR M. Estimating missing data in temporal data streams using multi-directional recurrent neural networks[J]. IEEE Transactions on Biomedical Engineering, 2019, 66 (5): 1477-1490.

相似文献/References:

[1]张 震,陈可鑫,陈云飞.优化聚类和引入 CBAM 的 YOLOv5 管制刀具检测[J].郑州大学学报(工学版),2023,44(05):40.[doi:10.13705/j.issn.1671-6833.2022.05.015]
 ZHANG Zhen,CHEN Kexin,CHEN Yunfei.YOLOv5 with Optimized Clustering and CBAM for Controlled Knife Detection[J].Journal of Zhengzhou University (Engineering Science),2023,44(02):40.[doi:10.13705/j.issn.1671-6833.2022.05.015]
[2]崔建明,蔺繁荣,张 迪,等.基于有向图的强化学习自动驾驶轨迹预测[J].郑州大学学报(工学版),2023,44(05):53.[doi:10.13705/j.issn.1671-6833.2023.05.002]
 CUI Jianming,LIN Fanrong,ZHANG Di,et al.Reinforcement Learning Autonomous Driving Trajectory Prediction Based on Directed Graph[J].Journal of Zhengzhou University (Engineering Science),2023,44(02):53.[doi:10.13705/j.issn.1671-6833.2023.05.002]
[3]李卫军,张新勇,高庾潇,等.基于门控时空注意力的视频帧预测模型[J].郑州大学学报(工学版),2024,45(01):70.[doi:10.13705/j.issn.1671-6833.2024.01.017]
 LI Weijun,ZHANG Xinyong,GAO Yuxiao,et al.Video Frame Prediction Model Based on Gated Spatio-Temporal Attention[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):70.[doi:10.13705/j.issn.1671-6833.2024.01.017]
[4]王 瑜,毕 玉,石健彤,等.基于注意力与多级特征融合的 YOLOv5 算法[J].郑州大学学报(工学版),2024,45(03):38.[doi:10. 13705 / j. issn. 1671-6833. 2023. 06. 009]
 LIU Xin,XU Hongzhen,LIU Aihua,et al.Geological Named Entity Recognition Based on MacBERT and R-Drop[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):38.[doi:10. 13705 / j. issn. 1671-6833. 2023. 06. 009]
[5]魏明军,王镆涵,刘亚志,等.基于特征融合和混合注意力的小目标检测[J].郑州大学学报(工学版),2024,45(03):72.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 001]
 WEI Mingjun,WANG Mohan,LIU Yazhi,et al.Small Object Detection Based on Feature Fusion and Mixed Attention[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):72.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 001]
[6]林 楠,唐凯鹏,牛勇鹏,等.基于双阶段特征提取网络的 ECG 降噪分类算法[J].郑州大学学报(工学版),2024,45(05):61.[doi:10.13705/j.issn.1671-6833.2024.05.005]
 LIN Nan,TANG Kaipeng,NIU Yongpeng,et al.An ECG Denoising and Classification Algorithm Based on Two-stage Feature Extraction Network[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):61.[doi:10.13705/j.issn.1671-6833.2024.05.005]
[7]林予松,李孟娅,李英豪,等.基于GAN和多尺度空间注意力的多模态医学图像融合[J].郑州大学学报(工学版),2025,46(01):1.[doi:10.13705/j.issn.1671-6833.2025.01.001]
 LIN Yusong,,et al.Multimodal Medical Image Fusion Based on GAN and Multiscale Spatial Attention[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):1.[doi:10.13705/j.issn.1671-6833.2025.01.001]

更新日期/Last Update: 2025-03-13