YANG Z N. Design and realization of the automatic target-scoring system [ J ] . Science Technology and Engineering, 2007, 7(1) : 102-104, 111.
[2] 冯斌, 石秀华, 康智强, 等. 声阵列与光探测组合测试弹着 点 坐 标 的 研 究 [ J ] . 压 电 与 声 光, 2012, 34(2) : 177-179.
FENG B, SHI X H, KANG Z Q, et al. Study on measurement of impact point coordinates with the combinationof acoustic array and optical detection[ J] . Piezoelectrics& Acoustooptics, 2012, 34(2) : 177-179.
[3] SUN J H, WANG S S, ZHANG F M, et al. Research onkey technologies in automatic target-reporting[ C]∥International Conference on Automatic Control and ArtificialIntelligence (ACAI 2012) . London: Institution of Engineering and Technology, 2012: 1732-1735.
[4] 黄应清, 陈晓明, 谢志宏, 等. 一种基于计算机视觉的胸环 靶 弹 孔 检 测 方 法 [ J] . 兵 器 装 备 工 程 学 报,2021, 42(11) : 157-162, 221.
HUANG Y Q, CHEN X M, XIE Z H, et al. Bullet holedetection method of chest ring target based on computervision technology [ J ] . Journal of Ordnance EquipmentEngineering, 2021, 42(11) : 157-162, 221.
[5] 宋雨, 王亚林, 杜博军, 等. 基于改进最大类间方差法的靶 板 重 孔 检 测 [ J] . 兵 工 学 报, 2022, 43 ( 4) :924-930.
SONG Y, WANG Y L, DU B J, et al. Detection of overlapped bullet holes based on improved otsu′s thresholdingmethod[J]. Acta Armamentarii, 2022, 43(4): 924-930.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You onlylook once: unified, real-time object detection [ C]∥2016IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788.
[7] 院老虎, 常玉坤, 刘家夫. 基于改进 YOLOv5s 的雾天场景车辆 检 测 方 法 [ J] . 郑 州 大 学 学 报 ( 工 学 版) ,2023, 44(3) : 35-41.
YUAN L H, CHANG Y K, LIU J F. Vehicle detectionmethod based on improved YOLOv5s in foggy scene[ J] .Journal of Zhengzhou University ( Engineering Science) ,2023, 44(3) : 35-41.
[8] 薛均晓, 武雪程, 王世豪, 等. 基于改进 YOLOv4 的自然人群口罩佩戴检测方法[ J] . 郑州大学学报( 工学版) , 2022, 43(4) : 16-22.
XUE J X, WU X C, WANG S H, et al. A method onmask wearing detection of natural population based on improved YOLOv4 [ J ] . Journal of Zhengzhou University(Engineering Science) , 2022, 43(4) : 16-22.
[9] WANG C Y, BOCHKOVSKIY A, LIAO H Y M.YOLOv7: trainable bag-of-freebies sets new state-of-theart for real-time object detectors [ C] ∥2023 IEEE / CVFConference on Computer Vision and Pattern Recognition(CVPR) . Piscataway: IEEE, 2023: 7464-7475.
[10] WOO S, PARK J, LEE J Y, et al. CBAM: convolutionalblock attention module[EB / OL]. (2018-07-17) [2023-12-11]. https:∥doi. org / 10. 48550 / arXiv. 1807. 06521.
[11] SUNKARA R, LUO T. No more strided convolutions orpooling: a new CNN building block for low-resolution images and small objects [ M ] ∥ Machine Learning andKnowledge Discovery in Databases. Cham: Springer,2023: 443-459.
[12] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: boundingbox regression loss with dynamic focusing mechanism[EB / OL] . (2023-01-24) [2023-12-11] . https:∥doi.org / 10. 48550 / arXiv. 2301. 10051.
[13] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[EB / OL] . (2014-01-24) [ 2023-12-11] . https:∥doi. org / 10. 48550 / arXiv. 1406. 6247.
[14] HOU Q B, ZHOU D Q, FENG J S. Coordinate attentionfor efficient mobile network design[C]∥2021 IEEE / CVFConference on Computer Vision and Pattern Recognition(CVPR) . Piscataway: IEEE, 2021: 13708-13717.
[15] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[ EB / OL ] . ( 2017 - 09 - 05 ) [ 2023 - 12 -11] . https:∥doi. org / 10. 48550 / arXiv. 1709. 01507.
[16] ZHENG Z H, WANG P, LIU W, et al. Distance-IoUloss: faster and better learning for bounding box regression[EB / OL] . (2019-11-19) [2023-12-11] . https:∥doi. org / 10. 48550 / arXiv. 1911. 08287.
[17] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal andefficient IOU loss for accurate bounding box regression[ J] . Neurocomputing,2022,506(28) :146-157.
[18] Ultralytics. YOLOv5[EB / OL] . (2020- 06- 26) [ 2023-12-11] . https:∥github. com / ultralytics/ yolov5.
[19] LIU W, ANGUELOV D, ERHAN D, et al. SSD: singleshot multibox detector [ C] ∥ECCV 2016 14th EuropeanConference. Cham: Springer,2016:21-37.