[1]刘 凯,汪佳琴,李汉涛.基于深度学习的车辆轨迹预测研究综述[J].郑州大学学报(工学版),2025,46(05):77-89.[doi:10.13705/j.issn.1671-6833.2025.02.006]
 LIU Kai,WANG Jiaqin,LI Hantao.A Review of Vehicle Trajectory Prediction Based on Deep Learning[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):77-89.[doi:10.13705/j.issn.1671-6833.2025.02.006]
点击复制

基于深度学习的车辆轨迹预测研究综述()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年05期
页码:
77-89
栏目:
出版日期:
2025-08-10

文章信息/Info

Title:
A Review of Vehicle Trajectory Prediction Based on Deep Learning
文章编号:
1671-6833(2025)05-0077-13
作者:
刘 凯 汪佳琴 李汉涛
北京航空航天大学 电子信息工程学院,北京 100191
Author(s):
LIU Kai WANG Jiaqin LI Hantao
School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
关键词:
车辆轨迹预测 深度学习 序列网络 图神经网络 生成模型 网格方法
Keywords:
vehicle trajectory prediction deep learning sequential network graph neural network generative model grid method
分类号:
TP181TP391
DOI:
10.13705/j.issn.1671-6833.2025.02.006
文献标志码:
A
摘要:
车辆轨迹预测(VTP)是交通技术领域中的重要研究对象。传统VTP方法需要大量特征工程,且难以实时适应复杂变化的环境。深度学习(DL)通过多层神经网络实现高效数据表达,克服了传统方法的局限性。对基于DL的VTP方法进行了综述,探讨了其在VTP中的应用及性能表现。首先,回顾了传统VTP方法和基于DL的VTP方法,介绍了VTP主要考虑的问题和问题的表述;其次,分析并比较了各类VTP方案,包括输入数据、输出结果和预测方法;再次,介绍了常用的评估指标,比较了这些VTP方案的实验结果,分析了VTP的应用,并展示了DL在VTP中表现出的优异性能;最后,展望了VTP未来在数据集、建模和计算效率方面的研究方向,指出车辆交互协同建模、模型的泛化以及多模态融合将是未来的挑战和研究方向。
Abstract:
Vehicle trajectory prediction (VTP) was a significant research subject in the transportation technology field. Traditional VTP methods require extensive feature engineering and struggle to adapt to complex and dynamic environments in real-time. Deep learning (DL) overcomes the limitations of traditional methods by achieving efficient data representation through multi-layer neural networks. Therefore, in this study a comprehensive review of DL-based VTP methods was carried out to explore their applications and performance in VTP. Firstly, the traditional VTP and DL-based VTP methods were explored, and the main consideration problems and problem formulations in VTP were introduced. Secondly, various VTP schemes, including input data, output results and prediction methods were analyzed and compared. Subsequently, commonly used evaluation metrics was introduced, and the experimental results of these VTP approaches were compared, the applications of VTP were analyzed, and the superior performance of DL in VTP were demonstrated. Finally, future research directions of VTP are discussed in terms of datasets, modeling approaches, and computational efficiency. It identifies that vehicle interaction collaborative modeling, model generalization, and multimodal fusion would constitute the primary challenges and research frontiers in the field.

参考文献/References:

[1]JU C, WANG Z, LONG C, et al. Interaction-aware Kalman neural networks for trajectory prediction[C]∥2020 IEEE Intelligent Vehicles Symposium. Piscataway:IEEE, 2020: 1793-1800. 

[2]LIU P F, FAN W. Extreme gradient boosting (XGBoost) model for vehicle trajectory prediction in connected and autonomous vehicle environment[J]. Promet-Traffic & Transportation, 2021, 33(5): 767-774. 
[3]WANG J, WANG P, ZHANG C, et al. F-Net: fusion neural network for vehicle trajectory prediction in autonomous driving[C]∥2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 4095-4099. 
[4]KATARIYA V, BAHARANI M, MORRIS N, et al. DeepTrack: lightweight deep learning for vehicle trajectory prediction in highways[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 1892718936. 
[5]GULZAR M, MUHAMMAD Y, MUHAMMAD N. A survey on motion prediction of pedestrians and vehicles for autonomous driving[J]. IEEE Access, 2021, 9: 137957-137969. 
[6]HU X H, ZHENG M. Research progress and prospects of vehicle driving behavior prediction[J]. World Electric Vehicle Journal, 2021, 12(2): 88. 
[7]SHENG Z H, XU Y W, XUE S B, et al. Graph-based spatial-temporal convolutional network for vehicle trajectory prediction in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (10): 17654-17665.
[8]LIU X L, WANG Y F, JIANG K, et al. Interactive trajectory prediction using a driving risk map-integrated deep learning method for surrounding vehicles on highways [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19076-19087. 
[9]张三川, 马啸. 基于轨迹加权预测的主动避撞安全距离模型及算法[J]. 郑州大学学报(工学版), 2022, 43(3): 104-110. 
ZHANG S C, MA X. A safe distance model and algorithm for active collision avoidance based on weighted prediction of trajectory[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(3): 104-110. 
[10] ZHAO Z Y, FANG H W, JIN Z, et al. GISNet: graphbased information sharing network for vehicle trajectory prediction[C]∥2020 International Joint Conference on Neural Networks. Piscataway:IEEE, 2020: 1-7. 
[11]WOO H, JI Y, KONO H, et al. Lane-change detection based on vehicle-trajectory prediction[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 1109-1116. 
[12] DAI S Z, LI Z H, LI L, et al. A flexible and explainable vehicle motion prediction and inference framework combining semi-supervised AOG and ST-LSTM[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 840-860.
[13] CHEN J N, WANG Y, WU R H, et al. Spatial-temporal graph neural network for interaction-aware vehicle trajectory prediction[C]∥2021 IEEE 17th International Conference on Automation Science and Engineering. Piscataway: IEEE, 2021: 2119-2125. 
[14] FENG X D, CEN Z P, HU J M, et al. Vehicle trajectory prediction using intention-based conditional variational autoencoder[C]∥2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 3514-3519. 
[15] CHOI D, YIM J, BAEK M, et al. Machine learningbased vehicle trajectory prediction using V2V communications and on-board sensors[J]. Electronics, 2021, 10 (4): 420. 
[16] CHEN L, ZHOU Q Y, CAI Y F, et al. CAE-GAN: a hybrid model for vehicle trajectory prediction[J]. IET Intelligent Transport Systems, 2022, 16(12): 1682-1696. 
[17] JO E, SUNWOO M, LEE M. Vehicle trajectory prediction using hierarchical graph neural network for considering interaction among multimodal maneuvers[J]. Sensors, 2021, 21(16): 5354. 
[18] BERNTORP K, HOANG T, DI CAIRANO S. Motion planning of autonomous road vehicles by particle filtering[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(2): 197-210. 
[19] MESSAOUD K, DEO N, TRIVEDI M M, et al. Trajectory prediction for autonomous driving based on multi-head attention with joint agent-map representation[C]∥2021 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2021: 165-170. 
[20] CUI H G, RADOSAVLJEVIC V, CHOU F C, et al. Multimodal trajectory predictions for autonomous driving using deep convolutional networks[C]∥2019 International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 2090-2096. 
[21] ZHOU W, YANG L, YING T X, et al. Velocity prediction of intelligent and connected vehicles for a traffic light distance on the urban road[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(11): 4119-4133. 
[22] ZHANG K P, FENG X L, WU L, et al. Trajectory prediction for autonomous driving using spatial-temporal graph attention transformer[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 2234322353. 
[23] LIN L, LI W Z, BI H K, et al. Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(2): 197-208. 
[24] YU J, ZHOU M, WANG X, et al. A dynamic and static context-aware attention network for trajectory prediction [J]. ISPRS International Journal of Geo-Information, 2021, 10(5): 336. 
[25] ALTCHÉ F, DE LA FORTELLE A. An LSTM network for highway trajectory prediction[C]∥2017 IEEE 20th International Conference on Intelligent Transportation Systems. Piscataway:IEEE, 2017: 353-359. 
[26] CHEN X B, ZHANG H J, ZHAO F, et al. Intentionaware vehicle trajectory prediction based on spatial-temporal dynamic attention network for Internet of vehicles [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19471-19483. 
[27]WU J B, CHEN X H, BIE Y M, et al. A co-evolutionary lane-changing trajectory planning method for automated vehicles based on the instantaneous risk identification[J]. Accident Analysis & Prevention, 2023, 180: 106907. 
[28]WANG J Q, WANG S C. Geographical information enhanced recognition of traffic modes and behavior patterns [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(4): 3777-3782. 
[29] KIM B, KANG C M, KIM J, et al. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network[C]∥2017 IEEE 20th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2017: 399-404. 
[30] XING Y, LV C, CAO D P. Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1341-1352. 
[31] ZHOU H, REN D C, XIA H X, et al. AST-GNN: an attention-based spatio-temporal graph neural network for interaction-aware pedestrian trajectory prediction[J]. Neurocomputing, 2021, 445: 298-308. 
[32] MO X Y, HUANG Z Y, XING Y, et al. Multi-agent trajectory prediction with heterogeneous edge-enhanced graph attention network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9554-9567. 
[33] GUI Z M, WANG X, LI W Z. Dynamic perception-based vehicle trajectory prediction using a memory-enhanced spatio-temporal graph network[J]. ISPRS International Journal of Geo-Information, 2024, 13(6): 172. 
[34] LI J C, MA H B, ZHANG Z H, et al. Spatio-temporal graph dual-attention network for multi-agent prediction and tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10556-10569. 
[35] SINGH D, SRIVASTAVA R. Graph neural network with RNNs based trajectory prediction of dynamic agents for autonomous vehicle[J]. Applied Intelligence, 2022, 52(11): 12801-12816. 
[36] MO X Y, XING Y, LV C. Graph and recurrent neural network-based vehicle trajectory prediction for highway driving[C]∥2021 IEEE International Intelligent Transportation Systems Conference. Piscataway:IEEE, 2021: 1934-1939. 
[37] LI X, ROSMAN G, GILITSCHENSKI I, et al. Vehicle trajectory prediction using generative adversarial network with temporal logic syntax tree features[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3459-3466. 
[38] HEGDE C, DASH S, AGARWAL P. Vehicle trajectory prediction using GAN[C]∥2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud). Piscataway: IEEE, 2020: 502-507. 
[39] ROY D, ISHIZAKA T, MOHAN C K, et al. Vehicle trajectory prediction at intersections using interaction based generative adversarial networks[C]∥2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 2318-2323. 
[40] GUO H Y, MENG Q Y, ZHAO X M, et al. Mapenhanced generative adversarial trajectory prediction method for automated vehicles[J]. Information Sciences, 2023, 622: 1033-1049. 
[41] NEUMEIER M, BOTSCH M, TOLLKÜHN A, et al. Variational autoencoder-based vehicle trajectory prediction with an interpretable latent space[C]∥2021 IEEE International Intelligent Transportation Systems Conference. Piscataway:IEEE, 2021: 820-827.
[42] LI C N, FENG G W, LI Y N, et al. DiffTAD: denoising diffusion probabilistic models for vehicle trajectory anomaly detection [J]. Knowledge-Based Systems, 2024, 286: 111387. 
[43] LI Z Y, LIANG H W, WANG H Q, et al. A multi-modal vehicle trajectory prediction framework via conditional diffusion model: a coarse-to-fine approach[J]. Knowledge-Based Systems, 2023, 280: 110990. 
[44] TANG Y J, HE H W, WANG Y. Hierarchical vector transformer vehicle trajectories prediction with diffusion convolutional neural networks [J]. Neurocomputing, 2024, 580: 127526. 
[45]WESTNY T, OLOFSSON B, FRISK E. Diffusion-based environment-aware trajectory prediction [EB/OL]. (2024-03-18)[2024-09-03]. https:∥doi. org/10. 48550/arXiv.2403.11643. 
[46] HAJRASOULIHA A, GHAHFAROKHI B S. Dynamic geo-based resource selection in LTE-V2V communications using vehicle trajectory prediction[J]. Computer Communications, 2021, 177: 239-254. 
[47] OMAMA M, INANI P, PAUL P, et al. ALT-Pilot: autonomous navigation with language augmented topometric maps [EB/OL]. (2023-10-03)[2024-09-03].https:∥ doi.org/10.48550/arXiv.2310.02324. 
[48] PENG M X, GUO X S, CHEN X D, et al. LC-LLM: explainable lane-change intention and trajectory predictions with large language models [EB/OL]. (2024-03-27) [2024-09-03]. http:∥arxiv.org/abs/2403.18344. 
[49] LAN Z X, LI H B, LIU L S, et al. Traj-LLM: a new exploration for empowering trajectory prediction with pretrained large language models [EB/OL]. (2024-0508)[2024-09-03]. https:∥doi. org/10.48550/arXiv. 2405.04909. 
[50] LI X, LIU E L, SHEN T Y, et al. ChatGPT-based scenario engineer: a new framework on scenario generation for trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(3): 4422-4431. 
[51]崔建明, 蔺繁荣, 张迪, 等. 基于有向图的强化学习自动驾驶轨迹预测[J]. 郑州大学学报(工学版), 2023, 44(5): 53-61. 
CUI J M, LIN F R, ZHANG D, et al. Reinforcement learning autonomous driving trajectory prediction based on directed graph[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(5): 53-61.

相似文献/References:

[1]郝旺身,陈耀,孙浩,等.基于全矢-CNN的轴承故障诊断研究[J].郑州大学学报(工学版),2020,41(05):92.[doi:10.13705/j.issn.1671-6833.2020.03.004]
 HAO Wangshen,CHEN Yao,SUN Hao,et al.Bearing Fault Diagnosis Based on Full Vector-CNN[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):92.[doi:10.13705/j.issn.1671-6833.2020.03.004]
[2]韩刚涛,马瑞鹏,吴 迪.基于时频图切割的宽带信号智能检测与识别[J].郑州大学学报(工学版),2023,44(03):44.[doi:10.13705/j.issn.1671-6833.2023.03.008]
 HAN Gangtao,MA uipeng,WU Di.Intelligent Detection and Identification of Broadband Signals Based on Time-frequency Map Cutting[J].Journal of Zhengzhou University (Engineering Science),2023,44(05):44.[doi:10.13705/j.issn.1671-6833.2023.03.008]
[3]汪 烨,周思源,翁知远,等.一种面向用户反馈的智能分析与服务设计方法[J].郑州大学学报(工学版),2023,44(03):58.[doi:10.13705/j.issn.1671-6833.2022.06.004]
 Wang Ye,Zhou Siyuan,Weng Zhiyuan,et al.An Intelligent Analysis and Service Design Method for User Feedback[J].Journal of Zhengzhou University (Engineering Science),2023,44(05):58.[doi:10.13705/j.issn.1671-6833.2022.06.004]
[4]张涛,葛育伟,韩旭,等.基于对抗机制的彩色图像隐写分析算法[J].郑州大学学报(工学版),2023,44(04):10.[doi:10.13705/j.issn.1671-6833.2023.04.013]
 ZHANG Tao,GE Yuwei,HAN Xu,et al.Color Image Steganalysis Algorithm Based on Adversarial Mechanisms[J].Journal of Zhengzhou University (Engineering Science),2023,44(05):10.[doi:10.13705/j.issn.1671-6833.2023.04.013]
[5]魏明军,王镆涵,刘亚志,等.基于特征融合和混合注意力的小目标检测[J].郑州大学学报(工学版),2024,45(03):72.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 001]
 WEI Mingjun,WANG Mohan,LIU Yazhi,et al.Small Object Detection Based on Feature Fusion and Mixed Attention[J].Journal of Zhengzhou University (Engineering Science),2024,45(05):72.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 001]
[6]陈晓鹏,徐 鹏,王占涛,等.基于单目视觉前馈的机械臂目标快速三维瞄准方法[J].郑州大学学报(工学版),2025,46(02):11.[doi:10.13705/j.issn.1671-6833.2025.02.001]
 CHEN Xiaopeng,XU Peng,WANG Zhantao,et al.Fast 3D Aiming Method of Manipulators Based on Monocular Visual Feedforward[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):11.[doi:10.13705/j.issn.1671-6833.2025.02.001]
[7]张 蓓,徐 硕,钟燕辉,等.基于改进YOLOv8算法的半刚性基层松散病害识别方法[J].郑州大学学报(工学版),2025,46(05):122.[doi:10.13705/j.issn.1671-6833.2025.05.006]
 ZHANG Bei,XU Shuo,ZHONG Yanhui,et al.Detection Method of Loose Defects in Semi-rigid Base Based on Improved YOLOv8 Algorithm[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):122.[doi:10.13705/j.issn.1671-6833.2025.05.006]

更新日期/Last Update: 2025-09-19