[1]胡鹏辉,盛桂琳,杜文风,等.三心拱断面地下管廊结构地震动力响应分析[J].郑州大学学报(工学版),2024,45(05):135-142.[doi:10.13705/j.issn.1671-6833.2024.05.012]
 HU Penghui,SHENG Guilin,DU Wenfeng,et al.Seismic Dynamic Response Analysis of Underground Utility TunnelStructure with Three-core Arch Section[J].Journal of Zhengzhou University (Engineering Science),2024,45(05):135-142.[doi:10.13705/j.issn.1671-6833.2024.05.012]
点击复制

三心拱断面地下管廊结构地震动力响应分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年05期
页码:
135-142
栏目:
出版日期:
2024-08-08

文章信息/Info

Title:
Seismic Dynamic Response Analysis of Underground Utility TunnelStructure with Three-core Arch Section
文章编号:
1671-6833(2024)05-0135-08
作者:
胡鹏辉12 盛桂琳1 杜文风1 金 岭3
1. 河南大学 土木建筑学院,河南 开封 475004;2. 中国建筑第五工程局有限公司,湖南 长沙 410004;3. 河南安诺尼建筑科技有限公司, 河南 郑州 450000
Author(s):
HU Penghui12 SHENG Guilin1 DU Wenfeng1 JIN Ling3
1. School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, China; 2. China Construction Fifth Engineering Division Co. , Ltd. , Changsha 410004, China; 3. Henan AOONE Architectural Technology co. , Ltd. , Zhengzhou 450000, China
关键词:
三心拱断面 地下管廊 地震响应 影响因素
Keywords:
three-center arch sectionunderground pipe gallery seismic response influencing factors
分类号:
TU990. 3
DOI:
10.13705/j.issn.1671-6833.2024.05.012
文献标志码:
A
摘要:
针对地下管廊抗震的问题,以郑州市耿河变电站到博文变电站之间的三心拱断面地下管廊为研究对象,利用 ANSYS Workbench 软件建立三维实体模型,对其进行前 6 阶的模态分析,发现该管廊存在纵向振动、竖向振动、横向振动以及转动。 基于模态分析,对管廊在水平地震和竖向地震作用下的位移响应、加速度响应和主应力响应进行分析。 结果表明:最大的水平和竖向位移峰值分别为 - 24. 222 mm 和 - 8. 954 mm;最大加速度峰值分别为3 354. 2 mm / s2 和 1 646. 0 mm / s2; 第 一 主 应 力 峰 值 分 别 为 514. 7 kPa 和 244. 15 kPa; 第 三 主 应 力 峰 值 分 别 为-608. 15 kPa 和-256. 71 kPa,可得出水平地震占主导作用。 对管廊的横向地震动力时程进行分析,改变频谱特性、结构材料强度、结构埋深等参数,分析其对管廊抗震性能的影响。 得到研究的管廊结构在地震波频谱特性约为1. 1 Hz 时最为敏感;混凝土强度的改变对管廊结构的动力响应影响不大;随管廊埋设深度的增加,周边土压力加大,使其内力逐步上升。
Abstract:
Aiming at the seismic problem of underground utility tunnel, the three-core arch section underground utility tunnel between Genghe Substation and Bowen Substation in Zhengzhou City was taken as the research object,ANSYS Workbench software was used to establish a three-dimensional solid model, and carries out the first 6 ordermodal analysis. It was found that the utility tunnel had longitudinal vibration, vertical vibration, lateral vibrationand rotation. Based on the modal analysis, the displacement response, acceleration response and principal stressresponse of the utility tunnel with horizontal and vertical earthquakes were analyzed. The results showed that themaximum horizontal and vertical displacement peaks were -24. 222 mm and -8. 954 mm, respectively. The maximum acceleration peaks were 3 354. 2 mm / s2and 1 646. 0 mm / s2, respectively. The peak values of the first principal stress were 514. 7 kPa and 244. 15 kPa, respectively. The peak values of the third principal stress were -608. 15 kPa and -256. 71 kPa, respectively. It could be concluded that the horizontal earthquake played a leadingrole. Based on the transverse seismic dynamic time history analysis of the utility tunnel, the parameters such asspectral characteristics, structural material strength and structural depth were changed to analyze their influence onthe seismic performance of the utility tunnel. The utility tunnel structure studied was the most sensitive when theseismic wave spectrum characteristic was about 1. 1 Hz; the change of concrete strength had little effect on the dynamic response of the pipe gallery structure. With the increase of the buried depth of the utility tunnel, the surrounding soil pressure increased, and the internal force gradually increased.

参考文献/References:

[1] 史晓军, 陈隽, 李杰. 地下综合管廊大型振动台模型试验研究[ J] . 地震工程与工程振动, 2008, 28( 6) :116-123.

SHI X J, CHEN J, LI J. Shaking table test on underground utility tunnel[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28(6): 116-123.
[2] 阮滨, 吉瀚文, 刘华北, 等. 大尺度可液化场地综合管廊纵向抗震分析方法[ J] . 华中科技大学学报( 自然科学版) , 2022, 50(8) : 99-104.
RUAN B, JI H W, LIU H B, et al. Longitudinal seismicanalysis method of utility tunnel in large-scale liquefiablesite[ J] . Journal of Huazhong University of Science andTechnology ( Natural Science Edition ) , 2022, 50 ( 8 ) :99-104.
[3] 王鹏宇, 王述红, 朱承金. 城市地下管廊结构地震动力响应分析[ J] . 东北大学学报(自然科学版) , 2019,40(7) : 1020-1027.
WANG P Y, WANG S H, ZHU C J. Seismic dynamicresponse analysis of urban underground utility tunnelstructure[ J] . Journal of Northeastern University (NaturalScience) , 2019, 40(7) : 1020-1027.
[4] 魏奇科, 王宇航, 王永超, 等. 叠合装配式地下综合管廊节 点 抗 震 性 能 试 验 研 究 [ J] . 建 筑 结 构 学 报,2019, 40(2) : 246-254.
WEI Q K, WANG Y H, WANG Y C, et al. Experimentstudy on seismic performance of joints in prefabricatedsandwich structures of utility tunnels [ J ] . Journal ofBuilding Structures, 2019, 40(2) : 246-254.
[5] SHAMSABADI A, LAW H, AMINI M. Seismic rocktunnel-structure interaction analysis[ C]∥12 th EuropeanConference on Earthquake Engineering. Oxford: ElsevierScience, 2002:91-98.
[6] 施有志, 孙爱琴, 林树枝, 等. Rayleigh 波作用下地下综合管廊动力响应三维数值分析[ J] . 世界地震工程,2017, 33(4) : 196-210.
SHI Y Z, SUN A Q, LIN S Z, et al. Three dimensional(3 D) numerical analysis of dynamic response of underground utility tunnels to Rayleigh wave effects[ J] . WorldEarthquake Engineering, 2017, 33(4) : 196-210.
[7] 杨仕升, 姜龙, 谢开仲. 城市地下综合管廊典型节点地震响应分析[ J] . 地震工程与工程振动, 2018, 38(5) : 103-110.
YANG S S, JIANG L, XIE K Z. Seismic response analysis of typical node of urban underground utility tunnel[ J ] . Earthquake Engineering and Engineering Dynamics, 2018, 38(5) : 103-110.
[8] DEBIASI E, GAJO A, ZONTA D. On the seismic response of shallow-buried rectangular structures[ J] . Tunnelling and Underground Space Technology, 2013, 38:99-113.
[9] GEBREMEDHN Z, QIAO G F, SUN L. Seismic effect analysis of the adjacent longitudinal box culvert for the utility tunnel[ J] . IOP Conference Series: Materials Scienceand Engineering, 2020, 758(1) : 012084.
[10] 甘梦云, 梁建文, 李东桥, 等. 基于壳-弹簧模型的预制地下管廊横向抗震分析[ J] . 自然灾害学报, 2022,31(2) : 102-110.
GAN M Y, LIANG J W, LI D Q, et al. Lateral seismicanalysis of precast utility tunnels using the shell-springmodel[ J] . Journal of Natural Disasters, 2022, 31( 2) :102-110.
[11] 刘述虹. 典型综合管廊体系地震响应分析[ D] . 哈尔滨: 中国地震局工程力学研究所, 2016.
LIU S H. Seismic response analysis of typical urban utility tunnel system [ D] . Harbin: Institute of EngineeringMechanics, China Earthquake Administration, 2016.
[12] LYSMER J, WAAS G. Shear waves in plane infinitestructures[ J] . Journal of the Engineering Mechanics Division, 1972, 98(1) : 85-105.
[13] DEEKS A J, RANDOLPH M F. Axisymmetric time-domain transmitting boundaries[ J] . Journal of EngineeringMechanics, 1994, 120(1) : 25-42.
[14] 廖 智 麒. 综 合 管 廊 地 震 响 应 分 析 及 影 响 因 素 研 究[D] . 广州: 华南理工大学, 2019.
LIAO Z Q. Study on seismic response analysis and influencing factors of utility tunnel [ D ] . Guangzhou: SouthChina University of Technology, 2019.
[15] 吴晔, 许紫刚, 杜修力. 软弱夹层对地下结构地震响应的影响分析 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2021,42(4) : 91-97.
WU Y, XU Z G, DU X L. Analysis of effects of weak interlayer on seismic responses of underground structures[ J] . Journal of Zhengzhou University ( Engineering Science) , 2021, 42(4) : 91-97.
[16] 谷音, 刘晶波, 杜义欣. 三维一致粘弹性人工边界及等效粘弹性边界单元[ J] . 工程力学, 2007, 24( 12) :31-37.
GU Y, LIU J B, DU Y X. 3 d consistent viscousspring artificial boundary and viscous-spring boundaryelement [ J ] . Engineering Mechanics, 2007, 24( 12) : 31- 37.

更新日期/Last Update: 2024-09-02