[1] WU L L, YANG B, JING P. Travel mode detection based on GPS raw data collected by smartphones: a systematic review of the existing methodologies[ J] . Information, 2016, 7(4) : 67. [2] PRELIPCEAN A C, GIDÓFALVI G, SUSILO Y O. Transportation mode detection: an in-depth review of applicability and reliability[ J] . Transport Reviews, 2017, 37(4) : 442-464.
[3] SHEN L, STOPHER P R. Review of GPS travel survey and GPS data-processing methods [ J ] . Transport Reviews, 2014, 34(3) : 316-334.
[4] 刘华斌. 手机信令数据背景下城市交通出行方式选择 辨识方法研究[D] . 北京: 北京交通大学, 2019. LIU H B. Urban transportation modes recognition based on mobile signaling data [ D] . Beijing: Beijing Jiaotong University, 2019.
[5] 苗壮. 基于手机信令数据的数据清洗挖掘与居民职住 空间分析[D] . 成都: 西南交通大学, 2017. MIAO Z. Research on data cleaning, mining, jobs and residential locations based on mobile phone signaling data [D] . Chengdu: Southwest Jiaotong University, 2017.
[6] 余锦斌. 基于手机信令的数据分析引擎设计与实现 [D] . 南京: 东南大学, 2018. YU J B. Design and implementation of analysis engine based on mobile phone data[ D] . Nanjing: Southeast University, 2018.
[7] 李曙光. 用于动态交通分配的合理路径集合算法研究 [J]. 郑州大学学报(工学版), 2009, 30(2): 125-128. LI S G. Reasonable path set algorithm for dynamic traffic assignment[ J] . Journal of Zhengzhou University ( Engineering Science) , 2009, 30(2) : 125-128.
[8] WHITE J, WELLS I. Extracting origin destination information from mobile phone data[C]∥Eleventh International Conference on Road Transport Information and Control. London: IET, 2002: 30-34.
[9] CACERES N, WIDEBERG J P, BENITEZ F G. Deriving origin-destination data from a mobile phone network[ J] . IET Intelligent Transport Systems, 2007, 1(1) : 15.
[10] ZHANG Y, QIN X, DONG S, et al. Daily O-D matrix estimation using cellular probe data[ C]∥ Transportation Research Board 89th Annual Meeting. Washington DC: TRB, 2010.
[11] MAMEI M, BICOCCHI N, LIPPI M, et al. Evaluating origin-destination matrices obtained from CDR data [ J] . Sensors, 2019, 19(20) : 4470.
[12] FEKIH M, BONNETAIN L, FURNO A, et al. Potential of cellular signaling data for time-of-day estimation anspatial classification of travel demand: a large-scale comparative study with travel survey and land use data [ J] . Transportation Letters, 2022, 14(7) : 787-805.
[13] 黄美灵, 陆百川. 基于手机定位的交通 OD 数据获取 技术[ J] . 重庆 交 通 大 学 学 报 ( 自 然 科 学 版) , 2010, 29(1) : 162-166. HUANG M L, LU B C. Traffic OD data collection technology based on mobile phone location [ J ] . Journal of Chongqing Jiaotong University (Natural Science) , 2010, 29(1) : 162-166.
[14] 魏玉萍, 韩 印. 基 于 手 机 定 位 的 交 通 OD 获 取 技 术 [ J] . 交通与运输(学术版) , 2011(2) : 33-36. WEI Y P, HAN Y. Traffic OD date collection technology based on mobile phone [ J ] . Traffic & Transportation, 2011(2) : 33-36.
[15] 蔡军, 刘锴, 刘涟涟. 基于 VISUM 模型的公交 OD 反 推研究: 以西宁市为例[ J] . 交通运输系统工程与信 息, 2013, 13(1) : 49-56. CAI J, LIU K, LIU L L. Bus OD matrix estimation by VISUM model: case of Xining of China [ J] . Journal of Transportation Systems Engineering and Information Technology, 2013, 13(1) : 49-56.
[16] YU C, HE Z C. Analysing the spatial-temporal characteristics of bus travel demand using the heat map[ J] . Journal of Transport Geography, 2017, 58: 247-255.
[17] GUO D S, ZHU X, JIN H, et al. Discovering spatial patterns in origin-destination mobility data[ J] . Transactions in GIS, 2012, 16(3) : 411-429.
[18] GONZÁLEZ M C, HIDALGO C A, BARABÁSI A L. Understanding individual human mobility patterns [ J ] . Nature, 2008, 453(7196) : 779-782.