HUA Y C, LIU Q Q, HAO K R, et al. A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(1): 1-8.
[3] 史非凡, 史旭华. 基于参考向量的自适应约束多目标 进化算法[J]. 计算机应用, 2022, 42(2): 542-549.
SHI F F, SHI X H. Adaptive reference vector based constrained multi-objective evolutionary algorithm[J]. Journal of Computer Applications, 2022, 42(2): 542-549.
[4] 梁静, 刘睿, 瞿博阳, 等. 进化算法在大规模优化问 题中的应用综述[ J] . 郑州大学学报(工学版) , 2018, 39(3) : 15-21.
LIANG J, LIU R, QU B Y, et al. A survey of evolutionary algorithms for large scale optimization problem [ J] . Journal of Zhengzhou University ( Engineering Science) , 2018, 39(3) : 15-21.
[5] EVERSON R M, FIELDSEND J E. Multiobjective optimization of safety related systems: an application to shortterm conflict alert[ J] . IEEE Transactions on Evolutionary Computation, 2006, 10(2) : 187-198.
[6] HE C, CHENG R, ZHANG C J, et al. Evolutionary large-scale multiobjective optimization for ratio error estimation of voltage transformers[ J] . IEEE Transactions on Evolutionary Computation, 2020, 24(5) : 868-881.
[7] TIAN Y, ZHANG X Y, WANG C, et al. An evolutionary algorithm for large-scale sparse multiobjective optimization problems[ J] . IEEE Transactions on Evolutionary Computation, 2020, 24(2) : 380-393.
[8] HE C, CHENG R, TIAN Y, et al. Paired offspring generation for constrained large-scale multiobjective optimization [ J ] . IEEE Transactions on Evolutionary Computation, 2021, 25(3) : 448-462.
[9] ZHANG X, MA Z B, DING B W, et al. A coevolutionary algorithm based on the auxiliary population for cstrained large-scale multi-objective supply chain network [ J] . Mathematical Biosciences and Engineering, 2022, 19(1) : 271-286.
[10] WANG B C, SHUI Z Y, FENG Y, et al. Evolutionary algorithm with dynamic population size for constrained multiobjective optimization [ J] . Swarm and Evolutionary Computation, 2022, 73: 101104.
[11] FAN Z, LI W J, CAI X Y, et al. Push and pull search for solving constrained multi-objective optimization problems[ J] . Swarm and Evolutionary Computation, 2019, 44: 665-679.
[12] MA H P, WEI H Y, TIAN Y, et al. A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints [ J ] . Information Sciences, 2021, 560: 68-91.
[13] TIAN Y, ZHANG T, XIAO J H, et al. A coevolutionary framework for constrained multiobjective optimization problems[ J] . IEEE Transactions on Evolutionary Computation, 2021, 25(1) : 102-116.
[14] WANG J H, LIANG G X, ZHANG J. Cooperative differential evolution framework for constrained multiobjective optimization [ J ] . IEEE Transactions on Cybernetics, 2019, 49(6) : 2060-2072.
[15] GUPTA A, ONG Y S, FENG L. Multifactorial evolution: toward evolutionary multitasking [ J] . IEEE Transactions on Evolutionary Computation, 2016, 20(3) : 343-357.
[16] CHEN K, XUE B, ZHANG M J, et al. An evolutionary multitasking-based feature selection method for high-dimensional classification [ J ] . IEEE Transactions on Cybernetics, 2022, 52(7) : 7172-7186.
[17] QIAO K J, YU K J, QU B Y, et al. An evolutionary multitasking optimization framework for constrained multiobjective optimization problems[ J] . IEEE Transactions on Evolutionary Computation, 2022, 26(2) : 263-277.
[18] MA X L, LIU F, QI Y T, et al. A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables[ J] . IEEE Transactions on Evolutionary Computation, 2016, 20(2) : 275-298.
[19] ZHANG X Y, TIAN Y, CHENG R, et al. A decision variable clustering-based evolutionary algorithm for largescale many-objective optimization[ J] . IEEE Transactions on Evolutionary Computation, 2018, 22(1) : 97-112.
[20] FAN Z, LI W J, CAI X Y, et al. Difficulty adjustable and scalable constrained multiobjective test problem toolkit[ J] . Evolutionary Computation, 2020, 28 ( 3) : 339 -378.
[21] ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm [ EB OL] . (2001-05 - 10) [ 2022 - 06 - 13] . https:∥doi. org / 10. 3929 / ethz-a-004284029.
[22] WANG B C, LI H X, LI J P, et al. Composite differential evolution for constrained evolutionary optimization[ J] . IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(7) : 1482-1495.
[23] TIAN Y, ZHENG X T, ZHANG X Y, et al. Efficient large-scale multiobjective optimization based on a competitive swarm optimizer [ J] . IEEE Transactions on Cybernetics, 2020, 50(8) : 3696-3708.
[24] FAN Z, LI W J, CAI X Y, et al. An improved epsilon constraint-handling method in MOEA / D for CMOPs with large infeasible regions [ J] . Soft Computing, 2019, 23 (23) : 12491-12510.
[25] MA Z W, WANG Y. Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons[ J] . IEEE Transactions on Evolutionary Computation, 2019, 23(6) : 972-986.
[26] TIAN Y, CHENG R, ZHANG X Y, et al. PlatEMO: a MATLAB platform for evolutionary multi-objective optimization educational forum[ J] . IEEE Computational Intelligence Magazine, 2017, 12(4) : 73-87.
[27] YU K J, LIANG J, QU B Y, et al. Dynamic selection preference-assisted constrained multiobjective differential evolution[ J] . IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(5) : 2954-2965.