[2] ZHANG C L, YU D, PENG C, et al. Preparation of K modified three-dimensionally ordered macroporous MnCeOx/Ti0.7Si0.3O2 catalysts and their catalytic performance for soot combustion[J]. Processes, 2021, 9(7): 1149.
[3] REN W, DING T, YANG Y X, et al. Identifying oxygen activation/oxidation sites for efficient soot combustion over silver catalysts interacted with nanoflower-like hydrotalcite-derived CoAlO metal oxides[J]. ACS Catalysis, 2019, 9(9): 8772-8784.
[4] L PEZ-SU REZ F E, BUENO-L PEZ A, ILL N-G MEZ M J. Cu/Al2O3 catalysts for soot oxidation: copper loading effect[J]. Applied Catalysis B: Environmental, 2008, 84(3/4): 651-658.
[5] HUESO J L, CABALLERO A, OCA A M, et al. Reactivity of lanthanum substituted cobaltites toward carbon particles[J]. Journal of Catalysis, 2008, 257(2): 334-344.
[6] WEI Y C, LIU J, ZHAO Z, et al. The catalysts of three-dimensionally ordered macroporous Ce1-xZrxO2-supported gold nanoparticles for soot combustion: the metal-support interaction[J]. Journal of Catalysis, 2012, 287: 13-29.
[7] KANG Y, SUN M, LI A M. Studies of the catalytic oxidation of CO over Ag/CeO2 catalyst[J]. Catalysis Letters, 2012, 142(12): 1498-1504.
[8] CHEN Y Z, LIAW B J, HUANG C W. Selective oxidation of CO in excess hydrogen over CuO/CexSn1-xO2 catalysts[J]. Applied Catalysis A: General, 2006, 302(2): 168-176.
[9] WANG D T, ZHANG C S, XIE Y Y, et al. A study on the catalytic oxidation of soot by Sn-Ce composite oxides: adsorbed oxygen and defect sites synergistically enhance catalytic activity[J]. New Journal of Chemistry, 2019, 43(44): 17423-17432.
[10] ZHANG Z L, MOU Z G, YU P F, et al. Diesel soot combustion on potassium promoted hydrotalcite-based mixed oxide catalysts[J]. Catalysis Communications, 2007, 8(11): 1621-1624.
[11] SHAN W J, YANG L H, MA N, et al. Catalytic activity and stability of K/CeO2 catalysts for diesel soot oxidation[J]. Chinese Journal of Catalysis, 2012, 33(4/5/6): 970-976.
[12] ZHANG Z L, ZHANG Y X, WANG Z P, et al. Catalytic performance and mechanism of potassium-promoted Mg-Al hydrotalcite mixed oxides for soot combustion with O2[J]. Journal of Catalysis, 2010, 271(1): 12-21.
[13] SUN M, WANG L, FENG B N, et al. The role of potassium in K/Co3O4 for soot combustion under loose contact[J]. Catalysis Today, 2011, 175(1): 100-105.
[14] CHEN Y, HE J H, TIAN H, et al. Enhanced formaldehyde oxidation on Pt/MnO2 catalysts modified with alkali metal salts[J]. Journal of Colloid and Interface Science, 2014, 428: 1-7.
[15] LI X G, DONG Y H, XIAN H, et al. De-NOx in alternative lean/rich atmospheres on La1-xSrxCoO3 perovskites[J]. Energy &Environmental Science, 2011, 4(9): 3351.
[16] LU H T, YU X H, YANG S, et al. MgO-Li2O catalysts templated by a PDMS-PEO comb-like copolymer for transesterification of vegetable oil to biodiesel[J]. Fuel, 2016, 165: 215-223.
[17] PENG Y, LI J H, CHEN L, et al. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study[J]. Environmental Science &Technology, 2012, 46(5): 2864-2869.
[18] BAIDYA T, GUPTA A, DESHPANDEY P A, et al. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ[J]. The Journal of Physical Chemistry C, 2009, 113(10): 4059-4068.
[19] LIU M H, WU X D, LIU S, et al. Study of Ag/CeO2 catalysts for naphthalene oxidation: balancing the oxygen availability and oxygen regeneration capacity[J]. Applied Catalysis B: Environmental, 2017, 219: 231-240.