[1]张长森,李聪聪,代稳月,等.K负载Sn0.4Ce0.6O2催化剂对碳烟的催化燃烧性能研究[J].郑州大学学报(工学版),2023,44(04):74-79.[doi:10.13705/j.issn.1671-6833.2023.01.004]
 ZHANG Changsen,LI Congcong,DAI Wenyue,et al.Study on Catalytic Combustion Performance of K-supported Sn0.4Ce0.6O2 Catalysts for Soot[J].Journal of Zhengzhou University (Engineering Science),2023,44(04):74-79.[doi:10.13705/j.issn.1671-6833.2023.01.004]
点击复制

K负载Sn0.4Ce0.6O2催化剂对碳烟的催化燃烧性能研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年04期
页码:
74-79
栏目:
出版日期:
2023-06-01

文章信息/Info

Title:
Study on Catalytic Combustion Performance of K-supported Sn0.4Ce0.6O2 Catalysts for Soot
作者:
张长森1李聪聪1 代稳月1 王登台2
1.郑州大学 生态与环境学院,河南 郑州 450001, 2.郑州大学 化学学院,河南 郑州 450001

Author(s):
ZHANG Changsen1 LI Congcong1 DAI Wenyue1 WANG Dengtai2
1.School of Ecology and Environment, Zhengzhou University, 450001, Zhengzhou, Henan, 2.School of Chemistry, Zhengzhou University, 450001, Zhengzhou, Henan

关键词:
碳烟 催化氧化 共沉淀 碱金属 Sn0. 4Ce0. 6O2
Keywords:
soot catalytic oxidation co-precipitation alkali metals Sn0. 4Ce0. 6O2
分类号:
X701;TQ426
DOI:
10.13705/j.issn.1671-6833.2023.01.004
文献标志码:
A
摘要:
催化燃烧是目前去除柴油发动机尾气中碳烟颗粒最有效的净化技术之一。 为提高催化剂表面 原子的移动性能,改善催化剂的低温氧化还原能力,采用碱金属 K 负载 SnxCe1- xO2 催化剂对碳烟的催化 燃烧性能进行研究。 利用共沉淀法将 Sn 和 Ce 按照不同的物质的量之比进行掺杂得到 SnxCe1- xO2 催化 剂,在微型固定床程序升温反应器上进行活性评价,发现 n S n ∶n Ce = 4 ∶6时催化剂具有最好的催化性能。 而后通过浸渍法制备了一系列更高活性的 xK / Sn-Ce 催化剂,并对其进行了 XRD、XPS、H2 -TPR、O2 -TPD 等表征分析。 结果表明:负载 K 之后的催化剂表面的活性氧的浓度得到了提高,氧转移速率加快,氧化 还原能力得到了提高。 当 K 负载量为 15% ( x = 15%) 时,催化剂对碳烟有最好的去除效果,产物中 CO2 的选择性达到 94. 3%,T90 温度为 388 ℃ 。 该研究为设计高效的碳烟燃烧催化剂提供了重要参考。
Abstract:
Catalytic combustion is one of the most effective purification technologies to remove soot particles from diesel engine exhaust. In order to improve the mobility of atoms on the catalyst surface and the low-temperature oxidation-reduction ability of the catalyst, the catalytic combustion performance of soot was studied by using alkali metal K-supported SnxCe1- xO2 catalyst. The SnxCe1- xO2 catalyst was obtained by doping Sn and Ce according to the ratio of different substances by co-precipitation method. The activity of the catalyst was evaluated in a micro fixed bed temperature programmed reactor, and it was found that the catalyst had the best catalytic performance when n Sn ∶n Ce = 4 ∶6. Then, a series of xK / Sn-Ce catalysts with higher activity were prepared by impregnation, and characterized by XRD, XPS, H2 -TPR, and O2 -TPD. The results showed that the concentration of active oxygen on the surface of loading K was increased, the oxygen transfer rate was accelerated, and the redox ability was improved. When the K loading is 15% ( x = 15%) , the catalyst has the best removal effect on soot, the selectivity of CO2 in the product reaches 94. 3%, and the T90 temperature is 388 ℃ . This research provides an important reference for the design of efficient soot combustion catalysts.

参考文献/References:

[1] LIU J H, YAO A R, YAO C D. Effects of diesel injection pressure on the performance and emissions of a HD common-rail diesel engine fueled with diesel/methanol dual fuel[J]. Fuel, 2015, 140: 192-200.

[2] ZHANG C L, YU D, PENG C, et al. Preparation of K modified three-dimensionally ordered macroporous MnCeOx/Ti0.7Si0.3O2 catalysts and their catalytic performance for soot combustion[J]. Processes, 2021, 9(7): 1149.
[3] REN W, DING T, YANG Y X, et al. Identifying oxygen activation/oxidation sites for efficient soot combustion over silver catalysts interacted with nanoflower-like hydrotalcite-derived CoAlO metal oxides[J]. ACS Catalysis, 2019, 9(9): 8772-8784.
[4] L PEZ-SU REZ F E, BUENO-L PEZ A, ILL N-G MEZ M J. Cu/Al2O3 catalysts for soot oxidation: copper loading effect[J]. Applied Catalysis B: Environmental, 2008, 84(3/4): 651-658.
[5] HUESO J L, CABALLERO A, OCA A M, et al. Reactivity of lanthanum substituted cobaltites toward carbon particles[J]. Journal of Catalysis, 2008, 257(2): 334-344.
[6] WEI Y C, LIU J, ZHAO Z, et al. The catalysts of three-dimensionally ordered macroporous Ce1-xZrxO2-supported gold nanoparticles for soot combustion: the metal-support interaction[J]. Journal of Catalysis, 2012, 287: 13-29.
[7] KANG Y, SUN M, LI A M. Studies of the catalytic oxidation of CO over Ag/CeO2 catalyst[J]. Catalysis Letters, 2012, 142(12): 1498-1504.
[8] CHEN Y Z, LIAW B J, HUANG C W. Selective oxidation of CO in excess hydrogen over CuO/CexSn1-xO2 catalysts[J]. Applied Catalysis A: General, 2006, 302(2): 168-176.
[9] WANG D T, ZHANG C S, XIE Y Y, et al. A study on the catalytic oxidation of soot by Sn-Ce composite oxides: adsorbed oxygen and defect sites synergistically enhance catalytic activity[J]. New Journal of Chemistry, 2019, 43(44): 17423-17432.
[10] ZHANG Z L, MOU Z G, YU P F, et al. Diesel soot combustion on potassium promoted hydrotalcite-based mixed oxide catalysts[J]. Catalysis Communications, 2007, 8(11): 1621-1624.
[11] SHAN W J, YANG L H, MA N, et al. Catalytic activity and stability of K/CeO2 catalysts for diesel soot oxidation[J]. Chinese Journal of Catalysis, 2012, 33(4/5/6): 970-976.
[12] ZHANG Z L, ZHANG Y X, WANG Z P, et al. Catalytic performance and mechanism of potassium-promoted Mg-Al hydrotalcite mixed oxides for soot combustion with O2[J]. Journal of Catalysis, 2010, 271(1): 12-21.
[13] SUN M, WANG L, FENG B N, et al. The role of potassium in K/Co3O4 for soot combustion under loose contact[J]. Catalysis Today, 2011, 175(1): 100-105.
[14] CHEN Y, HE J H, TIAN H, et al. Enhanced formaldehyde oxidation on Pt/MnO2 catalysts modified with alkali metal salts[J]. Journal of Colloid and Interface Science, 2014, 428: 1-7.
[15] LI X G, DONG Y H, XIAN H, et al. De-NOx in alternative lean/rich atmospheres on La1-xSrxCoO3 perovskites[J]. Energy &Environmental Science, 2011, 4(9): 3351.
[16] LU H T, YU X H, YANG S, et al. MgO-Li2O catalysts templated by a PDMS-PEO comb-like copolymer for transesterification of vegetable oil to biodiesel[J]. Fuel, 2016, 165: 215-223.
[17] PENG Y, LI J H, CHEN L, et al. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study[J]. Environmental Science &Technology, 2012, 46(5): 2864-2869.
[18] BAIDYA T, GUPTA A, DESHPANDEY P A, et al. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ[J]. The Journal of Physical Chemistry C, 2009, 113(10): 4059-4068.
[19] LIU M H, WU X D, LIU S, et al. Study of Ag/CeO2 catalysts for naphthalene oxidation: balancing the oxygen availability and oxygen regeneration capacity[J]. Applied Catalysis B: Environmental, 2017, 219: 231-240.

相似文献/References:

[1]崔铁兵,张晨,徐丽,等.萘催化氧化制备1,4-萘醌催化剂活性组分研究[J].郑州大学学报(工学版),2012,33(02):59.[doi:10.3969/j.issn.1671-6833.2012.02.015]
 CUI Tiebing,ZHANG Chen,XU Li.Study of Catalytic Component of Producing 1 ,4-Naphthoquinone with Catalytic Oxidation[J].Journal of Zhengzhou University (Engineering Science),2012,33(04):59.[doi:10.3969/j.issn.1671-6833.2012.02.015]
[2]杨杰,雒廷亮,陈金钟,等.萘催化氧化制萘醌催化剂载体对反应活性的影响[J].郑州大学学报(工学版),2002,23(02):27.[doi:10.3969/j.issn.1671-6833.2002.02.008]
 YANG Jie,Luo Tingliang,CHEN Jinzhong,et al.Effect of naphthalene-catalyzed oxidation to naphthoquinone catalyst support on reactivity[J].Journal of Zhengzhou University (Engineering Science),2002,23(04):27.[doi:10.3969/j.issn.1671-6833.2002.02.008]

更新日期/Last Update: 2023-07-01