[1]张富强,白筠妍,张林朋.基于生产甘特图的 AGV 资源约束调度方法[J].郑州大学学报(工学版),2022,43(04):23-29.[doi:10. 13705 / j. issn. 1671-6833. 2022. 04. 004]
 ZHANG Fuqiang,BAI Junyan,ZHANG Linpeng.Scheduling Method with AGV Resource Based on Production Gantt Chart[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):23-29.[doi:10. 13705 / j. issn. 1671-6833. 2022. 04. 004]
点击复制

基于生产甘特图的 AGV 资源约束调度方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年04期
页码:
23-29
栏目:
出版日期:
2022-07-03

文章信息/Info

Title:
Scheduling Method with AGV Resource Based on Production Gantt Chart
作者:
张富强12白筠妍12张林朋12
1. 长安大学 道路施工技术与装备教育部重点实验室,陕西 西安 710064; 2. 长安大学 智能制造系统研 究所,陕西 西安 710064
Author(s):
ZHANG Fuqiang12BAI Junyan12ZHANG Linpeng12
1.Key Laboratory of Road Construction Technology and Equipment of MOE,Chang′an University,Xi′an 710064,China;
2.Institute of Smart Manufacturing Systems,Chang′an University,Xi′an 710064,China
Keywords:
flexible job shop schedulingwhale optimization algorithmmulti-objective optimizationautomatic guided vehicleproduction Gantt chart
分类号:
TH18
DOI:
10. 13705 / j. issn. 1671-6833. 2022. 04. 004
文献标志码:
A
摘要:
面对制造企业数字化、网络化和智能化转型升级需求,自动引导车( AGV) 被广泛应用于生产作业的物流运输过程。 在对多品种小批量工件任务的工艺路线规划基础上,迫切需要对各加工运输环节进行集成以更加符合实际生产的要求。 针对有限 AGV 资源的柔性车间调度问题,构建了以最大完工时间、AGV 数量和资源不均衡率最小化的多目标模型, 采用基于生产甘特图的改进鲸鱼算法进行求解。首先,介绍了鲸鱼算法的基本原理;其次,设计了基于 AGV 数量、工序加工顺序和 AGV 编号的三段式编码方式将离散的数据转化为鲸鱼个体中的连续位置;最后,采用 3 种措施对算法进行改进:在初始化时通过反向学习策略获得较好的初始种群,而在迭代过程中分别加入自适应权重和变异因子,使算法的收 敛精度和全局搜索能力得到提高。 为验证算法的性能, 用改进鲸鱼算法与基本鲸鱼算法、 经典的NSGA-II 求解上述模型。 仿真结果表明,改进鲸鱼算法求解的质量较高且运行时间相较于 NSGA-II 缩短了 21. 6% 。 所提算法在有限 AGV 资源约束的智能化车间调度问题求解中有一定的实用价值。
Abstract:
At the demands of digital,networked and intelligent transformation and upgrading of manufacturing enterprises,automated guided vehicle (AGV) is widely used in the logistics transportation of production operation.On the basis of workpiece process route planning,it is urgent to plan the transportation in each process to meet the requirements of actual production.Aiming to solve the flexible job shop scheduling problem with limited AGV,a multi-objective scheduling model was established with the optimization functions of maximum completion time,AGV quantity and resource imbalance rate.An improved whale algorithm based on production Gantt chart was proposed to solve the above model.Firstly,the basic principle of whale algorithm was introduced.Secondly,a three-stage real number coding method including AGV quantity,process sequence and AGV number was designed to transform the discrete data into continuous positions in whale individuals.Then the algorithm was improved from three aspects.During initialization,a better initial population was obtained by reverse learning strategy;in the iterative process,adaptive weight and mutation factor were added separately to improve the convergence accuracy and global search ability of the algorithm.Finally,the improved whale algorithm,the basic whale algorithm and the NSGA-II were used separately to solve the scheduling model.The simulation results showed that the improved whale algorithm had higher solution quality and the running time was 21.6% shorter than NSGA-II.The algorithm proposed in the paper had certain practical value in solving the intelligent job shop scheduling problem with limited AGV resources.

参考文献/References:

[1] 陈敏. 考虑有限车间物流运输能力的 AGV 调度方 法[D] . 广州: 广东工业大学, 2019. 

CHEN M. AGV scheduling method considering limited logistics transportation capacity of workshop[D]. Guangzhou: Guangdong University of Technology, 2019. 
[2] 成丽新, 唐秋华, 张利平. 基于基因表达式编程的 单 AGV 加工车间调度规则生成[ J] . 现代制造工 程, 2020(1) : 43-49. 
CHENG L X, TANG Q H, ZHANG L P. Single AGV job shop dispatching rule generation based on gene expression programming[ J] . Modern manufacturing engineering, 2020(1) : 43-49.
 [3] 刘二辉, 姚锡凡, 陶韬, 等. 基于改进花授粉算法 的共融 AGV 作业车间调度[ J] . 计算机集成制造 系统, 2019, 25(9) : 2219-2236. 
LIU E H, YAO X F, TAO T, et al. Improved flower pollinaton algorithm for job shop scheduling problems integrated with AGVs[ J] . Computer integrated manufacturing systems, 2019, 25(9) : 2219-2236. 
[4] 贺长征, 宋豫川, 雷琦, 等. 柔性作业车间多自动 导引小车和机器的集成调度[ J] . 中国机械工程, 2019, 30(4) : 438-447. 
HE C Z, SONG Y C, LEI Q, et al. Integrated scheduling of multiple AGVs and machines in flexible job shops [ J] . China mechanical engineering, 2019, 30 (4) : 438-447.
 [5] 徐云琴, 叶春明, 曹磊. 含有 AGV 的柔性车间调度 优化研究[ J] . 计 算 机 应 用 研 究, 2018, 35 ( 11) : 3271-3275. 
XU Y Q, YE C M, CAO L. Research on flexible JobShop scheduling problem with AGV constraints [ J ] . Application research of computers, 2018, 35 ( 11 ) : 3271-3275.
 [6] 刘旭, 楼佩煌, 钱晓明, 等. 基于改进遗传算法的 物料配送多 AGV 调度优化[ J] . 机械设计与制造 工程, 2015, 44(3) : 16-21. 
LIU X, LOU P H, QIAN X M, et al. Scheduling of automated guided vehicles for material distribution based on improved genetic algorithm[ J] . Machine design and manufacturing engineering, 2015, 44(3) : 16 -21. 
 [7] 王俊英, 颜芬芬, 陈鹏, 等. 基于概率自适应蚁群 算法的云任务调度方法[ J] . 郑州大学学报( 工学 版) , 2017, 38(4) : 51-56. 
WANG J Y, YAN F F, CHEN P, et al. Task scheduling method based on probability adaptive ant colony optimization in cloud computing[ J] . Journal of Zhengzhou university ( engineering science) , 2017, 38(4) : 51-56.
 [8] 刘琼, 熊书平, 湛梦梦. 基于改进精英策略的 PCANSGAⅡ的高维目标调度优化[ J] . 计算机集成制 造系统, 2020, 26(9) : 2474-2483. 
LIU Q, XIONG S P, ZHAN M M. Many-objectives scheduling optimization based on PCA-NSGA Ⅱ with improved elite strategy[ J] . Computer integrated manufacturing systems, 2020, 26(9) : 2474-2483. 
[9] 龙志伟, 肖松毅, 王晖, 等. 基于粒子群算法的水 资源需 求 预 测 [ J ] . 郑 州 大 学 学 报 ( 工 学 版 ) , 2019, 40(4) : 32-35, 47. 
LONG Z W, XIAO S Y, WANG H, et al. Water resources demand prediction based on particle swarm optimization[ J] . Journal of Zhengzhou university ( engineering science) , 2019, 40(4) : 32-35, 47. 
[10] MIRJALILI S, LEWIS A. The whale optimization algorithm[ J] . Advances in engineering software, 2016, 95: 51-67.
 [11] 张斯琪, 倪静, 郭起轩. 能耗和噪声约束下的柔性 车间调 度 决 策 优 化 [ J] . 小 型 微 型 计 算 机 系 统, 2020, 41(2) : 431-439. 
ZHANG S Q, NI J, GUO Q X. Flexible shop scheduling decision optimization under the constraint of energy consumption and noise [ J ] . Journal of Chinese computer systems, 2020, 41(2) : 431-439. 
[12] 杨智飞, 苏春, 胡祥涛, 等. 面向智能生产车间的 多 AGV 系统多目标调度优化[ J] . 东南大学学报 (自然科学版) , 2019, 49(6) : 1033-1040.
 YANG Z F, SU C, HU X T, et al. Multi-objective scheduling optimization for multi-AGV systems of intelligent jobshop [ J ] . Journal of southeast university ( natural science edition ) , 2019, 49 ( 6 ) : 1033 -1040.
 [13] RIQUELME N, Von LÜCKEN C, BARAN B. Performance metrics in multi-objective optimization[C] / / 2015 Latin American Computing Conference ( CLEI) . Piscataway: IEEE, 2015: 1-11.

更新日期/Last Update: 2022-07-03