[1]林上顺,何乐,夏樟华,等.榫卯-灌浆套筒混合连接装配式方墩轴压承载力[J].郑州大学学报(工学版),2022,43(03):67-72.[doi:10.13705/j.issn.1671-6833.2022.03.008]
 LIN Shangshun,HE Yue,XIA Zhanghua,et al.Tenon-grouting Sleeve Connection Fabricated Square Pier Axial Compression Bearing Capacity[J].Journal of Zhengzhou University (Engineering Science),2022,43(03):67-72.[doi:10.13705/j.issn.1671-6833.2022.03.008]
点击复制

榫卯-灌浆套筒混合连接装配式方墩轴压承载力()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年03期
页码:
67-72
栏目:
出版日期:
2022-04-10

文章信息/Info

Title:
Tenon-grouting Sleeve Connection Fabricated Square Pier Axial Compression Bearing Capacity
作者:
林上顺1何乐1夏樟华2张乐彤2叶世集1陈治雄3
1.福建工程学院福建省土木工程新技术与信息化重点实验室;2.福州大学土木工程学院;3.福建省榕圣市政工程股份有限公司;

Author(s):
LIN Shangshun1 HE Yue1 XIA Zhanghua2 ZHANG Letong2 YE Shiji1 CHEN Zhixiong3
1.Fujian Provincial Key Laboratory of Advanced Technology and Information in Civil Engineering, Fujian University of Engineering, Fuzhou 350118, China; 
2.School of Civil Engineering, Fuzhou University, Fuzhou 350108, China; 
3.Fujian Rongsheng Municipal Engineering Co., Ltd.,Fuzhou 350011, China
关键词:
Keywords:
fabricated square pier ultimate axial bearing capacity finite element model parameter analysis calculation formula
分类号:
TU312+. 1
DOI:
10.13705/j.issn.1671-6833.2022.03.008
文献标志码:
A
摘要:
采用ABAQUS 软件,通过合理地挑选材料本构、单元类型,划分网格,建立边界条件,提出一种榫卯-灌浆套筒混合连接装配式方墩的有限元计算模型。该模型模拟了方墩在轴压荷载作用下的受力过程,与试验所得混凝土破坏形态,轴压极限承载力进行对比,分析了内部钢筋、钢管与灌浆套筒的受力状态,验证了所提模型的精度。在此基础上,以钢管混凝土(CFST)突榫中钢管的长度、厚度、直径为变量进行试验,结果表明:所提模型可以较好地模拟榫卯-灌浆套筒混合连接装配式方墩轴压过程,有限元计算得出的极限承载力与试验结果的比值的均值与方差分别为1.036和0.023增大CFST突榫中钢管的长度、直径可以明显提高榫卯-灌浆套筒连接装配式桥墩的极限承载力,改变CFST突榫中钢管厚度使榫卯-灌浆套筒连接装配式桥墩的极限承载力呈先增大后减小的趋势,但相对于改变钢管的长度、直径来说影响甚微提出地榫卯-灌浆套筒连接装配式方墩的轴压承载力简化计算公式,其计算结果均略低于试验和有限元参数分析的结果,与试验结果的相对误差均值为9.01% ,与有限元计算结果的误差均值为4.05%,误差较小,可用于该类型方墩的轴压承载力计算。
Abstract:
Using ABAQUS software, the finite element calculation model of square piers with tenon-grouting sleeve mixed connection was put forward by selecting material constitutive model and element type reasonably, dividing mesh and establishing boundary condition.The failure mode of concrete and the ultimate bearing capacity of concrete under axial load were compared with the test results, and the accuracy of finite element calculation was verified, the stress state of internal steel bar, steel pipe and grout sleeve was analyzed as the pressure increased.On this basis, taking the design parameters of CFST tenon(concrete-filled steel tube tenon)as the variables, the influence of the variables on the axial compression performance of the short pier of tenon-grouting sleeve hybrid connection was further studied, the results showed that the proposed finite element model could simulate the axial compression process of the square piers with tenon-grouting sleeve joint, the mean and variance of the ultimate bearing capacity calculated by finite element method and the test results were 1.036 and 0.023, respectively.Increasing the length and diameter of CFST tenon steel pipe could obviously increase the ultimate bearing capacity of the mortise-grouting sleeve connection bridge pier, the change of the thickness of CFST tenon steel tube had an increasing and decreasing trend for the ultimate bearing capacity of mortise-tenon-grout sleeve bridge pier, but it has little effect on the length and diameter of steel tube.In this study, a simplified formula for calculating the axial bearing capacity of square piers with mortise-tenon-grouted sleeve connection was presented.The calculated results were slightly lower than the results of tests and finite element analysis, and the average error between the calculated results and the experimental results was 9.01%, the error was 4.05%, and the error was small.It could be used to calculate the axial bearing capacity of this type of pier.

参考文献/References:

[1] 朱治宝,刘英. 跨海大桥大型预制墩柱的施工技术 [ J] . 桥梁建设,2004,34(5) :50-52.

 [2] 吕忠达. 杭州湾跨海大桥关键技术研究与实施[ J] .土木工程学报,2006,39(6) :78-82,87. 
[3] 叶华成. 上海长江大桥水上非通航孔墩身预制安装 技术[ J] . 桥梁建设,2007,37(5) :55-58. 
[4] 欧智菁,谢铭勤,秦志清,等. 带钢管剪力键的装配 式混凝土桥墩抗震性能 [ J] . 西 南 交 通 大 学 学 报, 2021,56(6) :1169-1175,1191. 
[5] 李帼昌,岳祥虎,杨志坚. 钢管-木-混凝土轴压短柱 有限元 分 析 [ J] . 沈 阳 建 筑 大 学 学 报 ( 自 然 科 学 版) ,2021,37(2) :193-201.
 [6] 韩林海,陶忠. 方钢管混凝土轴压力学性能的理论分析 与试验研究[J]. 土木工程学报,2001,34(2):17-25.
 [7] 邹昀,丁杰,王城泉,等. 新型格构式钢骨混凝土柱的轴 压性能研究[J]. 实验力学,2021,36(1):91-104.
 [8] MANDER J B,PRIESTLEY M J N,PARK R. Observed stress-strain behavior of confined concrete [ J]. Journal of structural engineering,1988,114(8):1827-1849.
 [9] 刘立军,贾明明,于晓辉. 箍筋约束混凝土的本构关 系研究[ J] . 工业建筑,2012,42(增刊 1) :188-191.
 [10] KENT D C,PARK R. Flexural members with confined concrete[ J] . Journal of the structural division, 1971, 97(7) :1969-1990. 
[11] 过镇海,张秀琴,张达成,等. 混凝土应力-应变全曲 线的试验研究[J]. 建筑结构学报,1982,3(1):1-12. 
[12] 齐虎,李云贵,吕西林. 箍筋约束混凝土单轴滞回本 构实用模型[ J] . 工程力学,2011,28(9) :95-102. 
[13] SHINOZUKA M, FENG M Q, LEE J, et al. Statistical analysis of fragility curves [ J] . Journal of engineering mechanics,2000,126(12) :1224-1231.
 [14] PARK R. Evaluation of ductility of structures and structural assemblages from laboratory testing[ J] . Bulletin of the New Zealand society for earthquake engineering,1989,22(3) :155-1

更新日期/Last Update: 2022-05-02