[1]易茂祥,宋晨钰,于金星,等.基于随机森林的集成电路适应性测试方研究[J].郑州大学学报(工学版),2021,42(04):13-18.[doi:10.13705/j.issn.1671-6833.2021.02.016]
 Yi Maoxiang,Song Chenyu,Yu Jinxing,et al.An Adaptive Test Method of IC Based on Random Forest[J].Journal of Zhengzhou University (Engineering Science),2021,42(04):13-18.[doi:10.13705/j.issn.1671-6833.2021.02.016]
点击复制

基于随机森林的集成电路适应性测试方研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年04期
页码:
13-18
栏目:
出版日期:
2021-07-30

文章信息/Info

Title:
An Adaptive Test Method of IC Based on Random Forest
作者:
易茂祥宋晨钰于金星宋钛鲁迎春黄正峰
合肥工业大学电子科学与应用物理学院;
Author(s):
Yi Maoxiang; Song Chenyu; Yu Jinxing; Song Titan; Lu Yingchun; Huang Zhengfeng;
School of Electronic Science and Application Physics of Hefei University of Technology;
关键词:
Keywords:
IC testrandom forestadaptive testtest timetest cost
DOI:
10.13705/j.issn.1671-6833.2021.02.016
文献标志码:
A
摘要:
随着集成电路产业的高速发展,芯片的复杂度不断增加,不可避免地导致高测试成本问题。适应性测试为降低测试成本提供了一种解决方案。提出了一种基于随机森林的适应性测试方法,利用特征重要性筛选出最为重要的测试组,同时根据测试组所能测出缺陷芯片的个数对测试组进行排序,通过删除部分测试组来降低测试时间。实验结果表明,随机森林与KNN和逻辑回归相比始终保持较低的测试逃逸水平。与现有测试方法相比,测试组删除可以大幅降低测试时间,从而降低测试成本。
Abstract:
An adaptive test method based on random forest was proposed to solve the problem of high test cost caused by increasing test time.For the chip of the training model,by calculating the Gini index,the importance of each test group to the model classification in the process of the chip parameter test was obtained,and the feature importance was used to quantify it.Then the importance of the test group was ranked to screen out the most important test groups for predicting the quality of the chip.At the same time,the number of defective chips that could be detected in each test group was counted.Part of the test was performed on the chips in the test set,the test time was reduced by deleting some test groups,and the random forest algorithm was used to predict the quality of the chips,so as to achieve a compromise between prediction accuracy and less time.Experimental results showed that compared with KNN and logistic regression algorithms,random forest could always maintains the best prediction accuracy,test escape level and running time.Compared with traditional test methods,the test time could be reduced by about 28% while maintaining a low test escape level.Compared with the other two representative adaptive testing methods,the proposed method performed better in reducing the test time.

参考文献/References:

[1] YILMAZ E,OZEV S,SINANOGLU O,et al.Adaptive testing:conquering process variations[C]//2012 17th IEEE European Test Symposium (ETS).Piscataway:IEEE,2012:1-6.

[2] STRATIGOPOULOS H G,STREITWIESERC.Adaptive test flow for mixed-signal ICs[C]//2017 IEEE 35th VLSI Test Symposium (VTS).Piscataway:IEEE,2017:1-6.
[3] MARINISSEN E J,SINGH A,GLOTTER D,et al.Adapting to adaptive testing[C]//2010 Design,Automation&Test in Europe Conference &Exhibition (DATE 2010).Piscataway:IEEE,2010:556-561.
[4] CHEN M J,ORAILOGLU A.Test cost minimization through adaptive test development[C]//Proceedings of the IEEE International Conference on Computer Design.Piscataway:IEEE,2008:234-239.
[5] AKKOUCHE N,MIR S,SIMEU E,et al.Analog/RF test ordering in the early stages of production testing[C]//2012 IEEE 30th VLSI Test Symposium (VTS).Piscataway:IEEE,2012:25-30.
[6] XUE C,SHAWN R D.A one-pass test-selection method for maximizing test coverage[C]//2015 33rd IEEE International Conference on Computer Design (ICCD).Piscataway:IEEE,2015:621-628.
[7] GONÇALVES H,LI X,CORREIA M,et al.A fast spatial variation modeling algorithm for efficient test cost reduction of analog/RF circuits[C]//2015 Design,Automation &Test in Europe Conference &Exhibition (DATE).Piscataway:IEEE,2015:1042-1047.
[8] AHMADI A,NAHAR A,ORR B,et al.Wafer-level process variation-driven probe-test flow selection for test cost reduction in analog/RF ICs[C]//2016 IEEE 34th VLSI Test Symposium (VTS).Piscataway:IEEE,2016:1-6.
[9] WANG K L,LIN B Y,WU C W,et al.Test cost reduction methodology for InFO wafer-level chip-scale package[J].IEEE design &test,2017,34(3):50-58.
[10] GRADY M,PEPPER B,PATCH J,et al.Adaptive testing-cost reduction through test pattern sampling[C]//2013 IEEE International Test Conference (ITC).Piscataway:IEEE,2013:1-8.
[11] LIU M Y,PAN R J,YE F M,et al.Fine-grained adaptive testing based on quality prediction[C]//2018 IEEE International Test Conference (ITC).Piscataway:IEEE,2018:1-10.
[12] AGRAWAL M,CHAKRABARTYK.Test-cost modeling and optimal test-flow selection of 3-D-stacked ICs[J].IEEE transactions on computer-aided design of integrated circuits and systems,2015,34(9):1523-1536.
[13] HSU C K,SARSON P,SCHATZBERGER G,et al.Variation and failure characterization through pattern classification of test data from multiple test stages[C]//2016 IEEE International Test Conference (ITC).Piscataway:IEEE,2016:1-10.
[14] AHMADI A,XANTHOPOULOS C,NAHAR A,et al.Harnessing process variations for optimizing wafer-level probe-test flow[C]//2016 IEEE International Test Conference (ITC).Piscataway:IEEE,2016:1-8.
[15] GOTKHINDIKAR K R,DAASCH W R,BUTLER K M,et al.Die-level adaptive test:real-time test reordering and elimination[C]//2011 IEEE International Test Conference.Piscataway:IEEE,2011:1-10.
[16] 李燕燕,杨昊天,曾玙璠.基于随机森林MOPSO的城市最优资本结构分析[J].郑州大学学报(工学版),2019,40(4):80-85.

相似文献/References:

[1]李燕燕,杨昊天,曾玙璠.基于随机森林MOPSO的城市最优资本结构分析[J].郑州大学学报(工学版),2019,40(04):14.[doi:10.13705/j.issn.1671-6833.2019.04.028]
 Li Yanyan,Yang Haotian,Zeng Yufan.Urban Optimal Capital Structure Analysis based on Random Forest and Multi-objective Particle Swarm Optimization[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):14.[doi:10.13705/j.issn.1671-6833.2019.04.028]
[2]尹 诗,侯国莲,于晓东,等.基于 Bi-RNN的风电机组主轴承温度预警方法研究[J].郑州大学学报(工学版),2019,40(05):44.[doi:10.13705/j.issn.1671-6833.2019.05.008]
 Yin Shi,Hou Guolian,Yu Xiaodong,et al.Research on early warning method of wind turbine main bearing temperature based on Bi-RNN[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):44.[doi:10.13705/j.issn.1671-6833.2019.05.008]
[3]李爱民,王海隆,许有成.优化随机森林算法的城市湖泊DOC浓度遥感反演[J].郑州大学学报(工学版),2022,43(06):90.[doi:10.13705/j.issn.1671-6833.2022.06.007]
 LI Aimin,WANG Hailong,XU Youcheng.Remote Sensing Retrieval of Urban Lake DOC Concentration Based on Optimized Random Forest Algorithm[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):90.[doi:10.13705/j.issn.1671-6833.2022.06.007]

更新日期/Last Update: 2021-08-26