[1]樊娇,雷涛,韩伟,等.无人机航迹规划技术研究综述[J].郑州大学学报(工学版),2021,42(03):39.[doi:10.13705/j.issn.1671-6833.2021.03.007]
 Fan Jiao,Lei Tao,Han Wei,et al.Research Research Research Research Research Research on UAV Trails[J].Journal of Zhengzhou University (Engineering Science),2021,42(03):39.[doi:10.13705/j.issn.1671-6833.2021.03.007]
点击复制

无人机航迹规划技术研究综述()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年03期
页码:
39
栏目:
出版日期:
2021-05-10

文章信息/Info

Title:
Research Research Research Research Research Research on UAV Trails
作者:
樊娇1 雷涛1 韩伟2 王锐3
陕西科技大学电子信息与人工智能学院;青岛恒星科技学院信息学院;国防科技大学系统工程学院;
Author(s):
Fan Jiao; Lei Tao; Han Wei; Wang Rui;
Institute of Electronic Information and Artificial Intelligence of Shaanxi University of Science and Technology; Information College of Qingdao School of Science and Technology; School of Systems Engineering, University of Defense Science and Technology;
关键词:
Keywords:
UAV path planning optimization algorithm survey
DOI:
10.13705/j.issn.1671-6833.2021.03.007
文献标志码:
A
摘要:
航迹规划是无人机自主飞行的关键技术之一典型的航迹规划分为3个步骤:首先充分考虑各种威胁环境,进行飞行航迹的初步规划,其次利用优化搜索算法找出最佳航迹,最后进行航迹平滑处理系统梳理了近些年关于无人机航迹规划的研究现状,分析了航迹规划过程中动力学约束和环境约束等因素阐述了航迹规划涉及的关键技术,包括地形获取¸威胁及代价建模¸航迹规划算法以及航迹平滑处理等,并进一步对常用的航迹规划算法,如A*算法¸遗传算法¸蚁群算法¸粒子群算法,以及常用的航迹平滑算法B样条曲线法进行了分析和归纳总结了当前无人机航迹规划模型构建与航迹规划算法两个方面存在的问题最后对无人机航迹规划未来可能的发展趋势进行了展望,指出构建合理的航迹规划的体系¸先进的在线航迹规划算法研究,以及多无人机协同航迹规划是未来的研究趋势。
Abstract:
Path planning is one of the key technologies of UAV autonomous flight. The typical path planning can be divided into three steps: firstly, the preliminary planning of flight path should be carried out by fully considering various threat environments; secondly, the optimal path should be found by using the optimization search algorithm; finally, the path should be smoothed. This paper systematically summarizes the studies of UAV path planning in recent years; analyzes the flight airspace, dynamic constraints and environmental constraints in the process of path planning; expounds the key technologies involved in path planning, including terrain acquisition, threat and cost modeling, path planning algorithm and path smoothing; and further analyzes and summarizes the common path planning algorithms, such as A* search algorithm, genetic algorithm, ant colony algorithm, particle swarm optimization algorithm, and the common path smoothing algorithm B-spline curve method; and summarizes the problems of the current UAV path planning model construction and path planning search algorithm. Finally, some potential future development trends of UAV path planning are proposed, including the construction of reasonable path planning system, the study of advanced online path planning algorithm, and the cooperative path planning of multi-UAV.

参考文献/References:

[1] RAMCHURN S D, FISCHER J E,IKUNO Y, et al. A study of human-agent collaboration for multi-UAV task allocation in dynamic environments[C]// Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. Buenos Aires, Argentina: IJCAI, 2015: 1184-1192.

[2] RUZ J J,AREVALO O,DE LA CRUZ J M,et al.Using MILP for UAVs trajectory optimization under radar detection risk[C]//2006 IEEE Conference on Emerging Technologies and Factory Automation. Piscataway: IEEE, 2006:957-960.
[3] SHIRI H,PARK J,BENNIS M. Massive autonomous UAV path planning:a neural network based mean-field game theoretic approach[C]//2019 IEEE Global Communications Conference (GLOBECOM). Piscataway: IEEE, 2019:1-6.
[4] HOTA S,GHOSE D.Waypoint-based trajectory planning of fixed-wing MAVs in 3D space[J].Journal of intelligent & robotic systems,2017,86(1):95-113.[5] 张佳龙,闫建国,张普,等.基于改进人工势场的无人机编队避障控制研究[J].西安交通大学学报,2018,52(11):112-119.
[6] LUO G C,YU J Q,MEI Y S,et al.UAV path planning in mixed-obstacle environment via artificial potential field method improved by additional control force[J].Asian journal of control,2015,17(5):1600-1610.
[7] ZHANG Z X,WU Q H,ZHANG B,et al.UAV flight strategy algorithm based on dynamic programming[J].Journal of systems engineering and electronics,2018,29(6):1293-1299.
[8] 杨健,董力勇,王鸿,等.应用分层优化法的多协作无人机任务规划方法[J].指挥与控制学报,2019,5(1):41-46.
[9] 胡中华,赵敏,姚敏,等.无人机航迹规划技术研究及发展趋势[J].航空电子技术,2009,40(2):24-29,36.
[10] 赵杰.数字地形模拟-地形数据获取与数字地形分析研究[D].武汉:武汉大学,2004.
[11] 巴海涛.无人机航迹规划研究[D].西安:西北工业大学,2006.
[12] 唐晓东.基于A*算法的无人机航迹规划技术的研究与应用[D].绵阳:西南科技大学,2015.
[13] BAGHERIAN M,ALOS A.3D UAV trajectory planning using evolutionary algorithms: a comparison study[J]. The aeronautical journal, 2015,119(1220):1271-1285.
[14] LIANG H J, BAI H Y, SUN R, et al. Three-dimensional path planning based on DEM[C]//2017 36th Chinese Control Conference (CCC). Piscataway: IEEE,2017:5980-5987.
[15] ANDERSON M, SCHAB D. Aircraft threat modeling from performance data[C]//Flight Simulation and Technologies. Reston, USA: AIAA, 1993:3553.[16] ROBERGE V,TARBOUCHI M,LABONTÉ G.Fast genetic algorithm path planner for fixed-wing military UAV using GPU[J].IEEE transactions on aerospace and electronic systems,2018,54(5):2105-2117.
[17] 李春华,周成平,丁明跃,等.动态环境中的飞行器实时三维航迹规划方法研究[J].宇航学报,2003,24(1):38-42,70.
[18] 张煜,陈璟,沈林成.基于概率地图的军用飞行器航迹规划方法研究[J].计算机仿真,2007(9):62-66.
[19] 温乃峰.低空复杂环境下小型无人机的在线航迹规划算法研究[D].哈尔滨:哈尔滨工业大学,2016.
[20] 王琼,刘美万,任伟建,等.无人机航迹规划常用算法综述[J].吉林大学学报(信息科学版),2019,37(1):58-67.
[21] SZCZERBA R J, GALKOWSKI P, GLICKTEIN I S, et al. Robust algorithm for real-time route planning[J].IEEE transactions on aerospace and electronic systems,2000,36(3):869-878.
[22] ZAMMIT C,VAN KAMPEN E J. Advancements for A* and RRT in 3D path planning of UAVs[C]//AIAA Scitech 2019 Forum. Reston, USA: AIAA, 2019:1-17.
[23] 曹栋,王瑞,曹越.基于A*算法的无人机攻击编队航迹规划[J].沈阳航空航天大学学报,2016,33(4):61-65.[24] 刘群芳.基于稀疏A*算法与进化算法的无人机动态航迹规划研究[D].南昌:南昌航空大学,2016.
[25] 李军华,刘群芳.基于稀疏A*算法与文化算法的无人机动态航迹规划[J].应用科学学报,2017,35(1):128-138.
[26] DAI R,FOTEDAR S,RADMANESH M,et al.Quality-aware UAV coverage and path planning in geometrically complex environments[J].Ad hoc networks,2018,73:95-105.
[27] ARANTES J D S, ARANTES M D S, TOLEDO C F M, et al. Heuristic and genetic algorithm approaches for UAV path planning under critical situation[J]. International journal on artificial intelligence tools,2017,26(1):1760008.
[28] YAN P, YAN Z, ZHENG H X, et al. A fixed wing UAV path planning algorithm based on genetic algorithm and dubins curve theory[C]//2018 2nd International Conference on Mechanical, Material and Aerospace Engineering. Wuhan, China: MATEC Web of Conferences, 2018:3003.
[29] 吕文鹏,许峰.基于多生境遗传算法的无人机航迹规划[J].软件导刊,2018,17(7):166-168.
[30] DORIGO M,MANIEZZO V,COLORNI A.Ant system:optimization by a colony of cooperating agents[J].IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 1996,26(1):29-41.

更新日期/Last Update: 2021-06-24