[1]王莉,叶会英.可见光通信中LED阵列的优化配置算法研究[J].郑州大学学报(工学版),2015,36(06):52.[doi:10.3969/j. issn.1671 -6833.2015.06.010]
ZHAO Guosheng,NIU ZhenzhenLIU Yongguang,SUN Chaoliang.Power Load Characteristic Classification Technology Research Based onan Optimal Fuzzy C-means Clustering Algorithm[J].Journal of Zhengzhou University (Engineering Science),2015,36(06):52.[doi:10.3969/j. issn.1671 -6833.2015.06.010]
点击复制
可见光通信中LED阵列的优化配置算法研究()
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
36
- 期数:
-
2015年06期
- 页码:
-
52
- 栏目:
-
- 出版日期:
-
2015-12-25
文章信息/Info
- Title:
-
Power Load Characteristic Classification Technology Research Based onan Optimal Fuzzy C-means Clustering Algorithm
- 作者:
-
王莉; 叶会英
-
郑州大学信息工程学院,河南郑州450001)
- Author(s):
-
ZHAO Guosheng1; NIU Zhenzhen1LIU Yongguang2; SUN Chaoliang2
-
1. School of Eletrical Engineering,Zhenghou University,Zhengzhou 450001 , China; 2.Henan Xu Ji Instrument Co. L.d,Xuchang 461000,China
-
- 关键词:
-
可见光通信; LED阵列布局; 优化算法; 普适性
- Keywords:
-
load clustering; FCM; load characteristic; daily load curve
- 分类号:
-
TN929.1
- DOI:
-
10.3969/j. issn.1671 -6833.2015.06.010
- 文献标志码:
-
A
- 摘要:
-
针对可见光通信中光源优化布局的局限性,提出了一种具有普适性的光源布局优化配置算法.仿真结果表明:利用该算法求解出的光源布局,不仅可以使得房间内的平均面积谱效率达到最大,光照度水平在400 lx ~ 1 500 lx,而且光分布均匀,可以满足人们对照明的需求,因此,该算法可以作为一种普适的求解光源布局的优化算法.
- Abstract:
-
In view of the disadvantages of the traditional Fuzny C-means clustering algorithm,the author pro-poses an adaptive FCM algorithm.This algorithm is based on two clustering results evaluation index of withinthe class distance MIA and between the class distance MDC.The ratio of MDC and MIA,defined as l,is anadaptive function to determine the clustering number c of FCM algorithm. At the same time,according to thefuzzy decision method,we use the objective function and partition entropy of FCM algorithm together to deter-mine the value of optimal fuzzy weighted m.This algorithm not only overcomes the FCM algorithm disadvan-tage of not being able to determine the clustering number automatically and fuzzy weighted index needs to begiven by experience,but also the clustering result is optimal.Finally,the correctness and effectiveness of thealgorithm were proved through example analysis.
更新日期/Last Update: