[1]罗 朋,陈光浩,杨东红,等.用于新能源发电的新型升降压转换器及其控制策略[J].郑州大学学报(工学版),2024,45(02):97-105.[doi:10.13705/j.issn.1671-6833.2023.05.016]
 LUO Peng,CHEN Guanghao,YANG Donghong,et al.A Novel Buck-boost Converter and Its Control Strategy for New Energy Power Generation[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):97-105.[doi:10.13705/j.issn.1671-6833.2023.05.016]
点击复制

用于新能源发电的新型升降压转换器及其控制策略()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年02期
页码:
97-105
栏目:
出版日期:
2024-03-06

文章信息/Info

Title:
A Novel Buck-boost Converter and Its Control Strategy for New Energy Power Generation
作者:
罗 朋 陈光浩 杨东红 郭 磊
广东海洋大学 电子与信息工程学院,广东 湛江 524088
Author(s):
LUO Peng CHEN Guanghao YANG Donghong GUO Lei
School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
关键词:
耦合电感 升降压转换器 小信号模型 PI 控制器 前馈控制
Keywords:
coupled inductor buck-boost converter small signal model PI controller feedforward control
DOI:
10.13705/j.issn.1671-6833.2023.05.016
文献标志码:
A
摘要:
针对新能源发电装置输出电压变化大难以实现储能的问题,提出一种基于 PI 控制器结合前馈控制的新型 单管耦合型升降压转换器,通过调节耦合电感的变比灵活调节电压转换比,同时降低了开关器件电压应力,采用无 源钳位电路,起到回收漏感能量和抑制开关管电压尖峰的作用,与传统升降压转换器相比具有更宽电压转换比,输 入电流连续和开关管电压应力小等优势;利用 PI 控制器结合前馈控制策略实现闭环控制,保证了转换器整个输入 电压范围内良好的输入暂态响应。 详细分析了转换器的工作原理并推导了转换器稳态特性,将所提转换器与其他 单管升降压转换器的各项性能进行比较。 推导了转换器的小信号模型,同时利用伯德图验证 PI 参数设计的正确 性,分析了 PI 控制器结合前馈控制策略的设计过程。 最后,搭建了一台额定功率 100 W,20 ~ 60 V 输入、48 V 输出 的实验样机,通过升压和降压模式下的实验来验证所提转换器的性能,同时验证了 PI 控制器结合前馈控制策略的 可行性,其中升压模式最大效率为 97. 08%,降压模式最大效率为 97. 10%。
Abstract:
To solve the problem that the output voltage of the new energy power generation device varied greatly and it was difficult to realize energy storage, a novel single-switch coupled buck-boost converter based on PI controller and feed-forward control was presented. The voltage gain could be adjusted by the turns ratio of the coupled inductor, and the voltage stress on the power switch was suppressed by the passive clamped circuit with recycled leakage inductor energy. Compared with traditional buck-boost converter, the proposed converter had the advantages of wider voltage conversion ratio, continuous input current, and low voltage stress on power switch. Combing PI controller with feedforward control strategy, superior input transient response of the converter during the whole input voltage range is obtained. The operating principles and steady-state characteristics of proposed converter were analyzed and derived in detail, respectively, and the performances were compared with other single-tube buck-boost converters. The small-signal model was derived, and the correctness of PI parameter design was verified by bode diagram. The design process of PI controller combined with feedforward control strategy was analyzed. Finally, an experimental prototype with a rated power of 100 W, 20 V to 60 V input, and 48 V output was built to verify the performance of the proposed converter in boost mode and buck mode, and the feasibility of PI controller combined with feed-forward control strategy. The measured maximum efficiencies with the boost and buck modes were 97. 08% and 97. 10%, respectively.

参考文献/References:

[1] 周强, 汪宁渤, 何世恩, 等. 高弃风弃光背景下中国新能源发展总结及前景探究[J]. 电力系统保护与控制, 2017, 45(10): 146-154.

ZHOU Q, WANG N B, HE S E, et al. Summary and prospect of China′s new energy development under the background of high abandoned new energy power[J]. Power System Protection and Control, 2017, 45(10): 146-154.
[2] LIU L B, WANG Z, WANG Y, et al. Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 110151.
[3] BANAEI M R, BONAB H A F. A novel structure for single-switch nonisolated transformerless buck-boost DC-DC converter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 198-205.
[4] MIAO S, WANG F Q, MA X K. A new transformerless buck-boost converter with positive output voltage[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 2965-2975.
[5] BANAEI M R, BONAB H A F. A high efficiency nonisolated buck-boost converter based on ZETA converter[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 1991-1998.
[6] LI J, LIU J J. A novel buck-boost converter with low electric stress on components[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2703-2713.
[7] 李梦娇, 彭继慎, 孙瑄瑨. 具有高增益低输出电流纹波的Buck-Boost变换器[J]. 辽宁工程技术大学学报(自然科学版), 2022, 41(4): 372-378.
LI M J, PENG J S, SUN X J. Buck-boost converter with high gain and low output current ripple[J]. Journal of Liaoning Technical University (Natural Science), 2022, 41(4): 372-378.
[8] BAHRAMI H, FARHANGI S, IMAN-EINI H, et al. A new interleaved coupled-inductor nonisolated soft-switching bidirectional DC-DC converter with high voltage gain ratio[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5529-5538.
[9] HSIEH Y C, CHENG H L, CHANG E C, et al. A soft-switching interleaved buck-boost LED driver with coupled inductor[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 577-587.
[10] HASANPOUR S, BAGHRAMIAN A, MOJALLALI H. Analysis and modeling of a new coupled-inductor buck-boost DC-DC converter for renewable energy applications[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8088-8101.
[11] 荣德生, 孙瑄瑨. 高增益耦合电感组合Buck-Boost-Zeta变换器[J]. 中国电机工程学报, 2020, 40(14): 4590-4601.
RONG D S, SUN X J. High gain coupled inductance combination Buck-Boost-Zeta converter[J]. Proceedings of the CSEE, 2020, 40(14): 4590-4601.
[12] ZHANG N, ZHANG G D, SEE K W, et al. A single-switch quadratic buck-boost converter with continuous input port current and continuous output port current[J]. IEEE Transactions on Power Electronics, 2018, 33(5): 4157-4166.
[13] KUMAR M A B, KRISHNASAMY V. A single-switch continuous input current buck-boost converter with noninverted output voltage[J]. IEEE Transactions on Power Electronics, 2023, 38(2): 2181-2190.
[14] LI X, LIU Y S, XUE Y S. Four-switch buck-boost converter based on model predictive control with smooth mode transition capability[J]. IEEE Transactions on Industrial Electronics, 2021, 68(10): 9058-9069.
[15] YANG Y, ZHONG W X, KIRATIPONGVOOT S, et al. Dynamic improvement of series-series compensated wireless power transfer systems using discrete sliding mode control[J]. IEEE Transactions on Power Electronics, 2018, 33(7): 6351-6360.
[16] 周坤雨, 岳宁宁, 邱柯妮. 自供能系统中可配置DC-DC转换器的设计[J]. 郑州大学学报(工学版), 2021, 42(4):70-76, 97.
ZHOU K Y, YUE N N, QIU K N. A reconfigurable DC-DC converter design for energy-harvesting system[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(4):70-76, 97.
[17] SANKARANARAYANAN V, GAO Y C, ERICKSON R W, et al. Online efficiency optimization of a closed-loop controlled SiC-based bidirectional boost converter[J]. IEEE Transactions on Power Electronics, 2022, 37(4): 4008-4021.

更新日期/Last Update: 2024-03-08