[1]黄国如,杨 格,曾博威,等.基于绿灰蓝基础设施融合的城市洪涝灾害调控[J].郑州大学学报(工学版),2023,44(02):14-21.[doi:10.13705/j.issn.1671-6833.2023.02.018]
 HUANG Guoru,YANG Ge,ZENG Bowei,et al.Study on urban flood disaster control ba<x>sed on green-gray-blue infrastructure integration[J].Journal of Zhengzhou University (Engineering Science),2023,44(02):14-21.[doi:10.13705/j.issn.1671-6833.2023.02.018]
点击复制

基于绿灰蓝基础设施融合的城市洪涝灾害调控()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44卷
期数:
2023年02期
页码:
14-21
栏目:
出版日期:
2023-02-27

文章信息/Info

Title:
Study on urban flood disaster control ba<x>sed on green-gray-blue infrastructure integration
作者:
黄国如12 杨 格1 曾博威1 吕永鹏3 任心欣4
1. 华南理工大学 土木与交通学院, 广东 广州 510640; 2. 华南理工大学 亚热带建筑科学国家重点实验室, 广东 广州 510640; 3. 上海市政工程设计研究总院(集团)有限公司,上海 200092; 4. 深圳市城市规划设计研究院有限公 司, 广东 深圳 518049

Author(s):
HUANG Guoru12 YANG Ge1 ZENG Bowei1 LYU Yongpeng3 REN Xinxin4
South China University of Technology Civil Engineering and Transportation, Guangzhou 510640, National Key Laboratory of South China University of Technology Asian Tropical Sciences, Guangdong Guangzhou 510640, School of Civil and Transportation, South China University of Technology, Guangdong Guangzhou 510640, Shanghai Municipal Engineering Design and Research Institute (Group) Co., Ltd. Company, Shanghai 200092, Shenzhen Urban Planning and Design Institute Co., Ltd., Shenzhen, Guangdong 518049

关键词:
绿灰蓝基础设施 布局优化 代理模型 防洪排涝调度绿灰蓝基础设施 布局优化 代理模型 防洪排涝调度
Keywords:
green-grey-blue infrastructure layout optimization surrogate model flood control and drainage operation
分类号:
TU998. 4
DOI:
10.13705/j.issn.1671-6833.2023.02.018
文献标志码:
A
摘要:
随着城市面临的内涝形势日益严峻,依靠雨水管网等基础设施进行末端快排的雨水管理思想难以从根本上解决城市内涝问题,而将绿、灰、蓝基础设施三者有机结合,能在确保城市洪涝灾害得到有效解决的基础上,系统解决多尺度下的水污染和水资源短缺等问题。本文基于绿灰蓝基础设施融合的理念,从城市雨水系统现状的综合评价、城市雨水系统的优化、城市防洪排涝调度等方面展开评述。在城市雨水系统评估方面,综述了以绿色基础设施为主体的低影响开发系统性能评估和以灰色基础设施为主体的城市雨水管网系统性能评估研究;在城市雨水系统优化方面,综述了绿色基础设施的设计参数优化及布局优化、管网等灰色基础设施的平面布局优化及管径埋深优化研究;在城市防洪排涝调度方面,综述了城市防洪排涝调度方法及城市防洪排涝调度系统的研究;旨在为构建集评估、优化、调度为一体的、工程措施与非工程措施相结合的城市洪涝灾害调控方法提供思路。
Abstract:
With the increasingly severe urban waterlogging situation, It was difficult for rainwater management with rainwater pipe network and other grey infrastructures for terminal rapid drainage to solve the problem of urban water-logging fundamentally. And combining the green, grey and blue infrastructure organically could besides on ensuring that urban floods were effectively solved, systematically solve multi-scale problems such as water pollution and water shortage. Based on the concept of green-grey-blue infrastructure integration, this study reviewed the comprehensive evaluation of urban stormwater system status, the optimization of urban stormwater system, and urban flood control and drainage scheduling. In terms of urban stormwater system assessment, the performance assessment of low impact development system with green infrastructure as the main body and the performance assessment of urban stormwater pipe network system with gray infrastructure as the main body were reviewed. In terms of urban stormwater system optimization, the optimization of design parameters and layout of green infrastructure and the optimization of plan layout and pipe diameter depth of gray infrastructure such as pipe network was reviewed; in terms of urban flood prevention and drainage scheduling, the study of urban flood prevention and drainage was reviewed. In urban flood control and drainage scheduling, the research on urban flood control and drainage scheduling methods and urban flood control and drainage scheduling systems were also reviewed.

参考文献/References:

[1] 黄国如. 城市暴雨内涝防控与海绵城市建设辨析[ J] . 中国防汛抗旱, 2018, 28(2) : 8-14. 

HUANG G R. Discrimination of relationship between urban storm waterlogging prevention and sponge city construction [ J ] . China Flood & Drought Management, 2018, 28(2) : 8-14.
[2] 刘家宏,裴羽佳,梅超. 郑州“ 7·20” 特大暴雨内涝成因 及灾害 防 控 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023, 44 (2) :38-45. 
LIU J H, PEI Y J, MEI CH, et al. Waterlogging cause and disaster prevention and control of " 7·20" torrential rain in Zhengzhou [ J ] . Journal of Zhengzhou University (Engineering Science) , 2023,44(2) :38-45. 
[3] BROWDER G, OZMENT S, REHBERGER BESCOS I, et al. Integrating green and gray: creating next generation infrastructure[ J] . World Resources Institute, 2019: 15- 27. 
[4] BARLOW D, BURRILL G, NOLFI J R. A research report on developing a community level natural resource inventory system [ M ] . Burlington: Center for Studies in Food Self-Sufficiency, 1977. 
[5] WHELANS C, MAUNSELL H G, THOMPSON P. et al. Planning & management guidelines for water sensitive urban ( residential) design: consultants report prepared for the department of planning and urban development, the water authority of western australia and the environmental protection authority[R/ OL]. (1994-03-01) [2022-10-02]. htps:/ / books. google. com. sg / books? id=VqH2rQEACAAJ 19.
 [6] CHARLESWORTH S M, BOOTH C A. Sustainable surface water management: a handbook for SuDS [M] . New York:Wiley, 2016. 
[7] STOVIN V, POË S, DE-VILLE S, et al. The influence of substrate and vegetation configuration on green roof hydrological performance [ J ] . Ecological Engineering, 2015, 85: 159-172.
 [8] 麦叶鹏, 黄国如, 解河海, 等. 基于 Hydrus-1D 模型的 LID 措施 雨 水 径 流 控 制 效 应 研 究 [ J ] . 水 利 学 报, 2022, 53(7) : 811-822. MAI Y P, HUANG G R, XIE H H, et al. Study on rainwater runoff control effect of LID measures based on Hydrus-1D[ J] . Journal of Hydraulic Engineering, 2022, 53(7) : 811-822. 
[9] TANG S J, JIANG J P, ZHENG Y, et al. Robustness analysis of storm water quality modelling with LID infrastructures from natural event-based field monitoring[ J] . Science of the Total Environment, 2021, 753: 142007. 
[10] HU M C, ZHANG X Q, LI Y, et al. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area [ J ] . Journal of Cleaner Production, 2019, 222: 373-380.
 [11] LI Q, WANG F, YU Y, et al. Comprehensive performance evaluation of LID practices for the sponge city construction: acase study in Guangxi, China[ J] . Journal of Environmental Management, 2019, 231: 10-20. 
[12] YE C L, XU Z X, LEI X H, et al. Simulation of pipeline network drainage at urban community scales based on SWMM: a case study in Fuzhou City[ J] . South-to-north Water Transfers and Water Science & Technology, 2022, 20(2) : 271-280. 
[13] SIMONS F, BUSSE T, HOU J M, et al. A model for overland flow and associated processes within the hydroinformatics modelling system[ J] . Journal of Hydroinformatics, 2014, 16(2) : 375-391.
 [14] 侯精明,董美君,李东来,等. 超标暴雨下城市雨水管 网排水效果———以西安市沣西新城为例[ J/ OL] . 地球 科学与环境学报,2022:1-10( 2022- 09- 07) [ 2022- 10 - 06 ] . https: / / kns. cnki. net / kcms/ detail / 61. 1423. P. 20220906. 1637. 001. html. 
HOU J M, DONG M J, LI D L, et al. Drainage effect of urban drainage-pipe network under extreme rainstorms——— taking Fengxi New City in Xi′an City, China as an example[J/ OL]. Journal of Earth Sciences and Environment, 2022:1- 10( 2022- 09- 07) [ 2022- 10- 06]. https: / / kns. cnki. net / kcms/ detail / 61. 1423. P. 20220906. 1637. 001. html.
 [15] GOURI R L, SRINIVAS V V, SOUMYA S N, et al. Impact assessment of land-use / land-cover changes on hydrology and storm water drain network in yelhanka watershed, Bangalore[ M] / / Lecture Notes in Civil Engineering. Singapore: Springer Nature Singapore, 2022: 279-291.
 [16] DUAN H F, XICHAO G. Flooding control and hydro-energy assessment for urban stormwater drainage systems under climate change[ J] . Water Resources Management, 2019: 105-116.
 [17] GRIP I, HAGHIG H S, ASPEGREN H. A methodology for the assessment of compound sea level and rainfall impact on urban drainage networks in a coastal city under climate change [ J] . City and Environment Interactions, 2021, 12: 100074.
 [18] URICH C, BACH P M, SITZENFREI R, et al. Modelling Cities and water infrastructure dynamics [ J ] . Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 2013, 166(5) : 301-308. 
[19] BEN-DAOUD A, BEN-DAOUD M, MOROSANU G A, et al. The use of low impact development technologies in the attenuation of flood flows in an urban area: Settat City (Morocco) as a case [ J ] . Environmental Challenges, 2022, 6: 100403.
 [20] 李尤, 邸苏闯, 潘兴瑶, 等. 基于改进层次分析法的 LID 空间布局优化研究[ J] . 中国给水排水, 2020, 36 (23) : 113-120. 
LI Y, DI S C, PAN X Y, et al. Spatial layout optimization of low impact development based on improved analytic hierarchy process [ J ] . China Water & Wastewater, 2020, 36(23) : 113-120. 
21] XU Z X, LI P, CHENG T. LID optimization layout facilities in sponge city: a case study of Huangtaiqiao Catchment in Jinan City [ J ] . South-to-north Water Transfers and Water Science & Technology, 2022, 20 ( 3 ) : 552 -562. [22] LATIFI M, RAKHSHANDEHROO G, NIKOO M R, et al. A game theoretical low impact development optimization model for urban storm water management[ J] . Journal of Cleaner Production, 2019, 241: 118323.
 [23] LU W, XIA W, SHOEMAKER C A. Surrogate global optimization for identifying cost-effective green infrastructure for urban flood control with a computationally expensive inundation model[ J] . Water Resources Research, 2022, 58(4) : 72-80. 
[24] HAGHIGHI A. Loop-by-loop cutting algorithm to generate layouts for urban drainage systems [ J ] . Journal of Water Resources Planning and Management, 2013, 139 (6) : 693-703.
[25] BAKHSHIPOUR A E, BAKHSHIZADEH M, DITTMER U, et al. Hanging gardens algorithm to generate decentralized layouts for the optimization of urban drainage systems[ J] . Journal of Water Resources Planning and Management, 2019, 145(9) :66-80. 
[26] BAKHSHIPOUR A, HESPEN J, HAGHIGHI A, et al. Integrating structural resilience in the design of urban drainage networks in flat areas using a simplified multiobjective optimization framework [ J] . Water, 2021, 13 (3) : 269. [27] 李芊, 张明媛, 袁永博. 基于 MOPSO 的雨水管网多目 标改建优化[ J] . 给水排水, 2016, 52(5) : 127-131. LI Q, ZHANG M Y, YUAN Y B. Multi-objective reconstruction optimization of rainwater pipe network based on MOPSO[ J] . Water & Wastewater Engineering, 2016, 52(5) : 127-131 .
[28] 杨祺琪, 张书亮, 戴强, 等. 基于 SWMM 和改进差分 进化算法的雨水管网优化方法 [ J] . 中国给水排水, 2016, 32(17) : 115-119, 124. 
YANG Q Q, ZHANG S L, DAI Q, et al. Optimization of rainwater pipe network based on SWMM and improved algorithm of differential evolution [ J ] . China Water & Wastewater, 2016, 32(17) : 115-119, 124. 
[29] 方咸根. 城市雨水管网多目标优化设计及韧性评估研 究[D] . 杭州: 浙江大学, 2019. 
FANG X G. Investigating the multi-objective design and resilience of urban drainage design problems[ D] . Hangzhou: Zhejiang University, 2019.
[30] 郑恺原, 向小华. 基于 SWMM 和 PSO-GA 的多目标雨 水管网优化模型[ J] . 水利水电技术, 2020, 51( 9) : 24-33. 
ZHENG K Y, XIANG X H. SWMM and PSO-GA-based multi-objective optimization model for rainwater pipeline network[ J] . Water Resources and Hydropower Engineering, 2020, 51(9) : 24-33.
 [31] 李小平, 邱元锋, 罗金耀, 刘志标, 李青, 胡进民. 广 州市白云区岭南围排水系统优化调度研究[ J] . 中国 农村水利水电, 2005(5) : 23-26. 
LI X P, QIU Y F, LUO J Y, et al. Study on optimal operation of drainage system in Lingnan enclosure of Baiyun District, Guangzhou[ J] . China Rural Water and Hydropower, 2005(5) : 23-26. 
[32] ZENG X, HU T S, CAI X M, et al. Improved dynamic programming for parallel reservoir system operation optimization[ J] . Advances in Water Resources, 2019, 131: 103373.
[33] YAZDI J, CHOI H S, KIM J H. A methodology for optimal operation of pumping stations in urban drainage systems [ J ] . Journal of Hydro-Environment Research, 2016, 11: 101-112. 
[34] 邓浩. 基于优化算法的梯级闸坝联合调度方法分析 [D] . 太原: 太原理工大学, 2018. 
DENG H. Analysis of combined operation method of cascade sluice and dam based on optimization algorithm [D] . Taiyuan: Taiyuan University of Technology, 2018. 
[35] YAN P R, ZHANG Z, LEI X H, et al. A multi-objective optimal control model of cascade pumping stations considering both cost and safety[ J] . Journal of Cleaner Production, 2022, 345: 131171. 
[36] DEMIR I, KRAJEWSKI W F. Towards an integrated Flood Information System: centralized data access, analysis, and visualization [ J ] . Environmental Modelling & Software, 2013, 50: 77-84. 
[37] CANILLO L J L, HERNANDEZ A A. Flood risk visualization and prediction information system: case of city Manila, Philippines [ C] / / 2021 IEEE 17th International Colloquium on Signal Processing & Its Applications. Piscataway:IEEE, 2021: 59-63.
 [38] 陈琳健. 景德镇市综合洪水风险管理决策支持系统开 发方案研究[D] . 南昌: 南昌大学, 2016. 
CHEN L J. Development scheme of decision support system for integrated flood risk management in Jingdezhen City[D] . Nanchang: Nanchang University, 2016. 
[39] 邹明忠, 缪岳军, 张丽, 等. 圩区防洪调度预警预报 系统: 以江阴市马甲圩为例[ J] . 水利信息化, 2020 (4) : 63-67. 
ZOU M Z, MIAO Y J, ZHANG L, et al. Flood dispatch control and early warning system in polder area—taking Majia Polder Area in Jiangyin City as an example [ J] . Water Resources Informatization, 2020(4) : 63-67.
 [40] 张金萍, 张朝阳, 左其亭. 极端暴雨下城市内涝模拟 与应急响应能力评估[ J] . 郑州大学学报( 工学版) , 2023, 44(2) : 30-37. 
ZHANG J P, ZHANG C Y, ZUO Q T. Urban waterlogging simulation and emergency response capacity evaluation under extreme rainstorms [ J] . Journal of Zhengzhou University ( Engineering Science ) , 2023, 44 ( 2 ) : 30 -37.

更新日期/Last Update: 2023-02-25