[1]张亚涛,刘宗凯,董冠英.埃洛石纳米管在膜分离领域的应用[J].郑州大学学报(工学版),2023,44(01):1-12.[doi:10.13705/j.issn.1671-6833.2023.01.018]
 ZHANG Y T,LIU Z K,DONG G Y.Application of Halloysite Nanotubes in Membrane Separation Field[J].Journal of Zhengzhou University (Engineering Science),2023,44(01):1-12.[doi:10.13705/j.issn.1671-6833.2023.01.018]
点击复制

埃洛石纳米管在膜分离领域的应用()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44卷
期数:
2023年01期
页码:
1-12
栏目:
出版日期:
2022-12-06

文章信息/Info

Title:
Application of Halloysite Nanotubes in Membrane Separation Field
作者:
张亚涛12刘宗凯12 董冠英12
1.郑州大学化工学院,河南郑州 450001, 2.郑州大学先进功能材料制造教育部工程研究中心,河南郑州 450001

Author(s):
ZHANG Y T12 LIU Z K12 DONG G Y12
1.School of Chemical Engineering, Zhengzhou University, 450001, 2.Zhengzhou, Henan, Engineering Research Center of the Ministry of Education of Zhengzhou University Advanced Functional Materials Manufacturing Education, Henan Zhengzhou 450001

关键词:
Keywords:
分类号:
O69;TQ028. 8
DOI:
10.13705/j.issn.1671-6833.2023.01.018
文献标志码:
A
摘要:
埃洛石纳米管(Halloyite nanotubes,HNTs)作为一种管状的天然矿物材料,在众多领域均有潜在应用价值。结合国内外研究现状,本文从HNTs的结构特点、表面特性出发,简要介绍了HNTs现有的表面改性方法(物理改性和化学改性),详细阐述了HNTs独特的中空管状结构、大空腔、表面亲水性以及荷电性对膜的物化性质(机械性能、热稳定性、亲水性、Zeta电位)和抗菌防污能力的影响,并对其作用机制进行了分析。同时还对杂化膜中HNTs的中空管状结构、亲水性等特性在气体分子、水分子等的溶解与扩散过程中所起到的重要作用进行了详细描述。此外,基于HNTs优良特性本文重点关注了HNTs在膜分离领域的应用:抗菌、防污、油水分离、脱盐、染料分离、气体分离等。最后对HNTs基膜材料的未来可能的应用领域进行了展望,以期在增进对HNTs的认识及新型HNTs基杂化膜的设计和制备等方面提供一定的帮助。
Abstract:
Halloyite nanotubes (HNTs), a tubular natural mineral material, have potential applications in many fields. ba<x>sed on the research status at home and abroad, this paper briefly introduced the existing surface modification methods (physical modification and chemical modification) of HNTs ba<x>sed on the structural characteristics and surface properties of HNTs, and the unique hollow tubular structure, large cavity, surface hydrophilicity, and surface chargeability of HNTs were elaborated, these influence on physicochemical properties (mechanical properties, thermal stability, hydrophilicity, Zeta potential) and antibacterial and antifouling properties of membranes were discussed and the mechanism of action was analyzed. At the same time, the important roles of the hollow tubular structure and hydrophilicity of HNTs in the hybrid membranes in the solution and diffusion of gas molecules, water molecules, etc. were described in detail. In addition, ba<x>sed on the excellent properties of HNTs, this paper focuse d on the applications of HNTs in the field of membrane separation: antibacterial, antifouling, oil-water separation, desalination, dye separation, gas separation, etc. Finally, the possible future application fields of HNTs-ba<x>sed membrane materials were prospected, in order to provide some help in improving the understanding of HNTs and the design and preparation of new HNTs-ba<x>sed hybrid membranes.

参考文献/References:

[1] DATTA S J, MAYORAL A, MURTHY SRIVATSA BETTAHALLI N, et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations[ J] . Science, 2022, 376(6597) : 1080-1087. 

[2] WANG F, ZHANG Z, SHAKIR I, et al. 2D polymer nanosheets for membrane separation [ J] . Advanced science, 2022, 9(8) : 2103814. 
[3] BURUGA K, KALATHI J T, KIM K H, et al. Polystyrene-halloysite nano tube membranes for water purification [ J ] . Journal of industrial and engineering chemistry, 2018, 61: 169-180. 
[4] ZHAO Q Q, HOU J W, SHEN J N, et al. Long-lasting antibacterial behavior of a novel mixed matrix water puri- fication membrane[ J] . Journal of materials chemistry A, 2015, 3(36) : 18696-18705. 
[5] RABIEE H, VATANPOUR V, FARAHANI M H D A, et al. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide ( ZnO ) nanoparticles [ J ] . Separation and purification technology, 2015, 156: 299-310.
[6] WANG Z Y, WANG Z X, LIN S H, et al. Nanoparticletemplated nanofiltration membranes for ultrahigh performance desalination [ J ] . Nature communications, 2018, 9: 2004.
[7] MASHHADIKHAN S, MOGHADASSI A, EBADI AMOOGHIN A, et al. Interlocking a synthesized polymer and bifunctional filler containing the same polymer′s monomer for conformable hybrid membrane systems [ J ] . Journal of materials chemistry A, 2020, 8(7): 3942-3955.
[8] LIU Y, CHEN Z J, LIU G P, et al. Conformation-controlled molecular sieving effects for membrane-based propylene / propane separation [ J ] . Advanced materials, 2019, 31(14) : 1807513.
[9] LI Y, LI S H, XU L H, et al. Highly selective PDMS membranes embedded with ILs-decorated halloysite nanotubes for ethyl acetate pervaporation separation[ J] . Separation and purification technology, 2022, 298: 121552. 
[10] CHENG C, SONG W H, ZHAO Q, et al. Halloysite nanotubes in polymer science: purification, characterization, modification and applications [ J] . Nanotechnology reviews, 2020, 9: 323-344. 
[11] 张冰, 王秋茹, 姚纪蕾, 等. 壳聚糖 / 埃洛石纳米管复 合多孔颗粒制备[ J] . 郑州大学学报(工学版) , 2014, 35(4) : 52-55. ZHANG B, WANG Q R, YAO J L, et al. Preparation of chitosan / halloysite nanotube hybrid porous beads [ J ] . Journal of Zhengzhou university ( engineering science ) , 2014, 35(4) : 52-55.
 [12] LIU M X, JIA Z X, JIA D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite [ J]. Progress in polymer science, 2014, 39(8): 1498-1525. 
[13] GRYLEWICZ A, MOZIA S. Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: a review [ J] . Separation and purification technology, 2021, 256: 117827. 
[14] PRISHCHENKO D A, ZENKOV E V, MAZURENKO V V, et al. Molecular dynamics of the halloysite nanotubes [ J ] . Physical chemistry chemical physics, 2018, 20 (8) : 5841-5849.
[15] SANTOS A C, FERREIRA C, VEIGA F, et al. Halloysite clay nanotubes for life sciences applications: from drug encapsulation to bioscaffold[ J] . Advances in colloid and interface science, 2018, 257: 58-70. 
[16] GUIMARÃES L, ENYASHIN A N, SEIFERT G, et al. Structural, electronic, and mechanical properties of single-walled halloysite nanotube models[ J] . The journal of physical chemistry C, 2010, 114(26) : 11358-11363. 
[17] YAH W O, TAKAHARA A, LVOV Y M. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle [ J] . Journal of the American chemical society, 2012, 134(3) : 1853-1859.
[18] LIU M X, JIA Z X, JIA D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite [ J] . Progress in polymer science, 2014, 39(8) : 1498- 1525. 
[19] YU L, WANG H X, ZHANG Y T, et al. Recent advances in halloysite nanotube derived composites for water treatment [ J ] . Environmental science: nano, 2016, 3 (1) : 28-44.
[20] PASBAKHSH P, CHURCHMAN G J, KEELING J L. Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers[ J] . Applied clay science, 2013, 74: 47-57.
[21] GHANBARI M, EMADZADEH D, LAU W J, et al. Super hydrophilic TiO2 / HNT nanocomposites as a new approach for fabrication of high performance thin film nanocomposite membranes for FO application [ J] . Desalination, 2015, 371: 104-114. 
[22] LIU M, GUO B, DU M, et al. Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol / halloysite nanotubes solution and its effect on properties of composite film [J]. Applied physics A, 2007, 88(2): 391-395. 
[23] YUAN P, TAN D Y, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes: recent research advances and future prospects[ J] . Applied clay science, 2015, 112: 75-93. 
[24] LUO P, ZHANG J S, ZHANG B, et al. Preparation and characterization of silane coupling agent modified halloysite for Cr ( Ⅵ) removal [ J ] . Industrial & engineering chemistry research, 2011, 50(17) : 10246-10252. 
[25] ZHU K C, DUAN Y Y, WANG F, et al. Silane-modified halloysite / Fe3O4 nanocomposites: simultaneous removal of Cr(Ⅵ) and Sb(Ⅴ) and positive effects of Cr(Ⅵ) on Sb( Ⅴ) adsorption [ J ] . Chemical engineering journal, 2017, 311: 236-246. 
[26] MA Y F, ZHAO Z H, TANG B Y, et al. Facile preparation of polymer-grafted halloysite nanotubes via a redox system: a novel approach to construct antibacterial hydrogel[J]. Macromolecular research, 2020, 28(10): 948-952.
[27] ALIREZAEI S, MONIRVAGHEFI S M, SALEHI M, et al. Wear behavior of Ni-P and Ni- P -Al 2O3 electroless 第 1 期 张亚涛,等:埃洛石纳米管在膜分离领域的应用 11 coatings[ J] . Wear, 2007, 262(7 / 8) : 978-985.
[28] GONZÁLEZ-RIVERA J, SPEPI A, FERRARI C, et al. Structural, textural and thermal characterization of a confined nanoreactor with phosphorylated catalytic sites grafted onto a halloysite nanotube lumen [ J] . Applied clay science, 2020, 196: 105752.
[29] ZHANG B F, GUO H Z, YUAN P, et al. Novel acidbased geopolymer synthesized from nanosized tubular halloysite: the role of precalcination temperature and phosphoric acid concentration[ J] . Cement and concrete composites, 2020, 110: 103601.
[30] FENG J, FAN H, ZHA D A, et al. Characterizations of the formation of polydopamine-coated halloysite nanotubes in various pH environments [ J ] . Langmuir, 2016, 32 (40) : 10377-10386. 
[31] POIKELISPÄÄ M, DAS A, DIERKES W, et al. Synergistic effect of plasma-modified halloysite nanotubes and carbon black in natural rubber-butadiene rubber blend [ J ] . Journal of applied polymer science, 2013, 127 (6) : 4688-4696. 
[32] ZHANG H L, REN T F, JI Y J, et al. Selective modification of halloysite nanotubes with 1-pyrenylboronic acid: a novel fluorescence probe with highly selective and sensitive response to hyperoxide[ J] . ACS applied materials & interfaces, 2015, 7(42) : 23805-23811. 
[33] LISUZZO L, CAVALLARO G, MILIOTO S, et al. Halloysite nanotubes as nanoreactors for heterogeneous micellar catalysis[ J] . Journal of colloid and interface science, 2022, 608: 424-434. 
[34] GE L, LIN R J, WANG L, et al. Surface-etched halloysite nanotubes in mixed matrix membranes for efficient gas separation [ J ] . Separation and purification technology, 2017, 173: 63-71. 
[35] PARK S, RYU J, CHO H Y, et al. Halloysite nanotubes loaded with HKUST-1 for CO2 adsorption [ J ] . Colloids and surfaces A: physicochemical and engineering aspects, 2022, 651: 129750. 
[36] MISHRA G, MUKHOPADHYAY M. Enhanced antifouling performance of halloysite nanotubes ( HNTs) blended poly( vinyl chloride) ( PVC / HNTs) ultrafiltration membranes: for water treatment[ J] . Journal of industrial and engineering chemistry, 2018, 63: 366-379.
[37] LIAO L B, LV G C, CAI D X, et al. The sequential intercalation of three types of surfactants into sodium montmorillonite [ J ] . Applied clay science, 2016, 119: 82-86. 
[38] DU M L, GUO B C, JIA D M. Thermal stability and flame retardant effects of halloysite nanotubes on poly ( propylene) [ J] . European polymer journal, 2006, 42 (6) : 1362-1369. 
[39] MOZIA S, GRYLEWICZ A, ZGRZEBNICKI M, et al. Investigations on the properties and performance of mixedmatrix polyethersulfone membranes modified with halloysite nanotubes[ J] . Polymers, 2019, 11(4) : 671. 
[40] KAMAL N, AHZI S, KOCHKODAN V. Polysulfone / halloysite composite membranes with low fouling properties and enhanced compaction resistance [ J ] . Applied clay science, 2020, 199: 105873.
 [41] WAN IKHSAN S N, YUSOF N, MAT NAWI N I, et al. Halloysite nanotube-ferrihydrite incorporated polyethersulfone mixed matrix membrane: effect of nanocomposite loading on the antifouling performance [ J ] . Polymers, 2021, 13(3) : 441. 
[42] CHEN Y F, ZHANG Y T, LIU J D, et al. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions [ J] . Chemical engineering journal, 2012, 210: 298-308. 
[43] GUO W, LIU W, XU L, et al. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds[ J] . Journal of materials science & technology, 2020, 46: 237-247.
[44] ZHAO Q Q, LIU C C, LIU J D, et al. Development of a novel polyethersulfone ultrafiltration membrane with antibacterial activity and high flux containing halloysite nanotubes loaded with lysozyme[ J] . RSC advances, 2015, 5: 38646-38653.
[45] DUAN L L, HUANG W, ZHANG Y T. High-flux, antibacterial ultrafiltration membranes by facile blending with N-halamine grafted halloysite nanotubes [ J ] . RSC advances, 2015, 5(9) : 6666-6674. 
[46] HE H R, XU P, WANG D M, et al. Polyoxometalatemodified halloysite nanotubes-based thin-film nanocomposite membrane for efficient organic solvent nanofiltration [ J] . Separation and purification technology, 2022, 295: 121348. 
[47] WANG Q Q, CUI J Y, LIU S W, et al. Facile preparation of halloysite nanotube-modified polyvinylidene fluoride composite membranes for highly efficient oil / water emulsion separation [ J ] . Journal of materials science, 2019, 54(11) : 8332-8345. 
[48] WANG Y H, ZHANG X R, LI J P, et al. Enhancing the CO2 separation performance of SPEEK membranes by incorporation of polyaniline-decorated halloysite nanotubes [ J]. Journal of membrane science, 2019, 573: 602-611. [49] DUAN L L, ZHAO Q Q, LIU J D, et al. Antibacterial behavior of halloysite nanotubes decorated with copper nanoparticles in a novel mixed matrix membrane for water  purification[ J] . Environmental science: water research and technology, 2015, 1(6) : 874-881. 
[50] ZHU L P, WANG H X, BAI J, et al. A porous graphene composite membrane intercalated by halloysite nanotubes for efficient dye desalination [ J ] . Desalination, 2017, 420: 145-157. 
[51] MA J, HE Y, TANG X D, et al. Stable graphene oxidehalloysite composite membrane with enhanced permeability for efficient dye desalination[ J] . Separation and purification technology, 2021, 266: 118067. 
[52] AMID M, NABIAN N M, DELAVAR M. Fabrication of polycarbonate ultrafiltration mixed matrix membranes including modified halloysite nanotubes and graphene oxide nanosheets for olive oil / water emulsion separation[ J]. Separation and purification technology, 2020, 251: 117332. 
[53] LI H, HOU J W, BENNETT T D, et al. Templated growth of vertically aligned 2D metal-organic framework nanosheets[ J] . Journal of materials chemistry A, 2019, 7(10) : 5811-5818. 
[54] AFSHOUN H R, POURAFSHARI CHENAR M, MORADI M R, et al. Effects of halloysite nanotubes on the morphology and CO2 / CH4 separation performance of Pebax / polyetherimide thin-film composite membranes[ J] . Journal of applied polymer science, 2020, 137(28) : 48860. 
[55] CHEHRAZI E, SHARIF A, KARIMI M. Rational design of halloysite surface chemistry for high performance nanotube-thin film nanocomposite gas separation membranes [J]. ACS applied materials & interfaces, 2020, 12(33): 37527-37537. 
[56] BULBUL Y E, OKUR M, DEMIRTAS-KORKMAZ F, et al. Development of PCL / PEO electrospun fibrous membranes blended with silane-modified halloysite nanotube as a curcumin release system[ J] . Applied clay science, 2020, 186: 105430. 
[57] GONG Z S, ZHENG S L, ZHANG J, et al. Cross-linked PVA/ HNT composite separator enables stable lithiumorganic batteries under elevated temperature [ J ]. ACS applied materials & interfaces, 2022, 14(9): 11474-11482. [58] LV Y K, SUN X, YAN S, et al. Solvent-free halloysite nanotubes nanofluids based polyacrylonitrile fibrous membranes for protective and breathable textiles[ J] . Composites communications, 2022, 33: 101211.

相似文献/References:

[1]李洪亮,王战辉,姚银娇,等.膜分离法回收不凝气中乙醇/水蒸气的实验研究[J].郑州大学学报(工学版),2012,33(03):91.[doi:10.3969/j.issn.1671-6833.2012.03.023]

更新日期/Last Update: 2022-12-06