[1]高岳林,杨钦文,王晓峰,等.新型群体智能优化算法综述[J].郑州大学学报(工学版),2022,43(03):21-30.[doi:10.13705/j.issn.1671-6833.2022.03.007]
 GAO Yuelin,YANG Qinwen,WANG Xiaofeng,et al.Summary of New Group Intelligent Optimization Algorithms[J].Journal of Zhengzhou University (Engineering Science),2022,43(03):21-30.[doi:10.13705/j.issn.1671-6833.2022.03.007]
点击复制

新型群体智能优化算法综述()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年03期
页码:
21-30
栏目:
出版日期:
2022-04-10

文章信息/Info

Title:
Summary of New Group Intelligent Optimization Algorithms
作者:
高岳林12 杨钦文12 王晓峰1 李嘉航23 宋彦杰4
1.北方民族大学计算机科学与工程学院;2.北方民族大学宁夏智能信息与大数据处理重点实验室;3.北方民族大学数学与信息科学学院;4.国防科技大学系统工程学院;

Author(s):
GAO Yuelin12 YANG Qinwen12 WANG Xiaofeng1 LI Jiahang23 SONG Yanjie4
1.School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China; 
2.Ningxia Key Laboratory of Intelligent Information and Data Processing,North Minzu University, Yinchuan 750021, China; 
3.School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, China; 
4.College of Systems Engineering, National University of Defense Technology, Changsha, 410073, China
关键词:
Keywords:
swarm intelligence optimization algorithm bat algorithm fruit fly optimization algorithm whale optimization algorithm salp swarm algorithm harris hawks optimization algorithm
分类号:
TP18;TP301
DOI:
10.13705/j.issn.1671-6833.2022.03.007
文献标志码:
A
摘要:
智能优化算法主要分为4类:仿自然优化算法、进化算法、仿植物生长算法和群体智能优化算法,其中群体智能优化算法是最为重要的一类算法。智能优化算法与图像处理,故障检测、路径规划、粒子滤波,特征选择、生产调度、入侵检测、支持向量机、无线传感器、神经网络等技术领域交叉融合,应用更加广泛。以蝙蝠算法、果蝇优化算法、鲸鱼优化算法、樽海鞘群体算法和哈里斯鹰优化算法为基础,对群体智能优化算法的模型,特征、改进策略及应用领域等进行了综述,从理论研究、改进策略和应用研究3个方面分析了其面临的发展机遇和未来趋势,给出了算法应用的指导意见。研究表明:群体智能优化算法在众多经典问题上的表现较好,而在多目标优化、多约束优化,动态优化和混合变量优化等领域仍有待扩展不同群体智能优化算法在面对各类具体问题时有效的参数控制仍是未来的研究重点种群协同进化、探索更高效的混合算法和搜索策略是可行的解决途径。
Abstract:
Intelligent optimization algorithms could be divided into four categories: nature-like optimization algorithm, evolutionary algorithm, plant growth simulation algorithm,and swarm intelligence optimization algorithm.The swarm intelligence optimization algorithm was the most important type of algorithm.It played an important role in solving complex engineering problems, and together with image processing, fault detection, path planning, particle filtering, feature selection, production scheduling, intrusion detection, support vector machines, wireless sensors, neural network models, and got more extensive applications in other fields.In recent years, intelligent optimization algorithms such as bat algorithm, fruit fly optimization algorithm, whale optimization algorithm, salp swarm algorithm, and harris hawks optimization algorithm were widely used.Based on these five new swarm intelligence optimization algorithm, the model, characteristics, improvement strategies and application fields of the algorithm were reviewed.It analyzed the development opportunities and future trends it faced from theoretical investigations, improvement strategy and application studies, and provided a guidance on algorithm application.Findings showed that swarm intelligence optimization algorithm could perform well on many classic problems, but still should be expanded in the fields of multi-objective optimization, multi-constraint optimization, dynamic optimization, and mixed variable optimization.Effective parameter control of different groups of intelligent optimization algorithm in the face of various specific problems was still the focus of future studies.Co-evolution from populations, exploring more efficient hybrid methods and search strategies could be feasible solutions.

参考文献/References:

[1] 韩丽霞. 自然启发的优化算法及其应用研究[ D] . 西安:西安电子科技大学,2009. 

[2] 李士勇,李 研,林 永 茂. 智 能 优 化 算 法 与 涌 现 计 算 [M] . 北京:清华大学出版社,2019.
 [3] METROPOLIS N,ROSENBLUTH A W,ROSENBLUTH M N,et al. Equation of state calculations by fast computing machines [ J ]. The journal of chemical physics, 1953,21(6):1087-1092. 
[4] KIRKPATRICK S, Jr GELATT C D,VECCHI M P. Optimization by simulated annealing [ J ] . Science, 1983,220(4598) :671-680. 
[5] HOSSEINI H S. Problem solving by intelligent water drops[C] / / 2007 IEEE Congress on Evolutionary Computation. Piscataway:IEEE,2007:3226-3231.
 [6] HOSSEINI H S. Intelligent water drops algorithm[ J] . International journal of intelligent computing and cybernetics,2008,1(2) :193-212.
 [7] 华一村,刘奇奇,郝矿荣,等. 非规则 Pareto 前沿面 多目标进化优化算法研究综述[ J] . 郑州大学学报 (工学版) ,2021,42(1) :1-8.
 [8] HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with application to biology[M] . Cambridge:MIT press,1992.
 [9] STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces [ J ] . Journal of global optimization, 1997,11(4) :341-359. 
[10] MEHRABIAN A R,LUCAS C. A novel numerical optimization algorithm inspired from weed colonization [ J] . Ecological informatics,2006,1(4) :355-366. 
[11] YANG X S. Flower pollination algorithm for global optimization[C] / / Unconventional Computation and Natural Computation. Berlin:Springer,2012: 240-249.
 [12] BENI G, WANG J. Swarm intelligence in cellular robotic systems [ J] . Robots and biological systems: towards a new bionics, 1993,102: 703-712. 
[13] COLORNI A, DORIGO M, MANIEZZO V,et al. Distributed optimization by ants colonies[C] / / Proceedings of the 1st European Conference on Artificial Life. Paris: El Sevier Publishing, 1991: 134-142.
 [14] KENNEDY J,EBERHART R. Particle swarm optimization[ C] / / Proceedings of ICNN′95-International Conference on Neural Networks. Piscataway: IEEE,1995: 1942-1948. 
[15] YANG X S. A new metaheuristic bat-inspired algorithm[ J] . Computer knowledge & technology, 2010, 284: 65-74. 
[16] 潘文超. 果蝇最佳化演算法:最新演化式计算技术 [M] . 台中:沧海书局, 2011.
 [17] MIRJALILI S,LEWIS A. The whale optimization algorithm[ J] . Advances in engineering software,2016,95: 51-67.
 [18] MIRJALILI S,GANDOMI A H,MIRJALILI S Z,et al. Salp swarm algorithm:a bio-inspired optimizer for engineering design problems[ J] . Advances in engineering software,2017,114:163-191.
 [19] HEIDARI A A,MIRJALILI S,FARIS H, et al. Harris hawks optimization:algorithm and applications[ J] . Future generation computer systems,2019,97:849-872.
 [20] 许德刚,赵萍. 蝙蝠算法研究及应用综述[ J] . 计算 机工程与应用,2019,55(15) :1-12,31. 
[21] 李苗苗,王秋萍,惠蕙. 分数阶策略和带有 Lévy 飞 行的螺旋蝙蝠算法[ J] . 计算机工程与应用,2021, 57(18) :75-81. 
[22] 倪昌浩,邹海. 基于改进蝙蝠算法的移动机器人路 径规划方法研究[ J] . 制造业自动化,2021,43( 6) : 53-56,62.
 [23] ESKANDARI S,JAVIDI M M. A novel hybrid bat algorithm with a fast clustering-based hybridization [ J ] . Evolutionary intelligence,2020,13(3) :427-442.
 [24] MUGEMANYI S,QU Z Y,RUGEMA F X,et al. Optimal reactive power dispatch using chaotic bat algorithm [ J] . IEEE access,2020,8:65830-65867. 
[25] CHAKRI A,KHELIF R,BENOUARET M, et al. New directional bat algorithm for continuous optimization problems[ J] . Expert systems with applications,2017, 69:159-175. 
[26] 陈凯镔,陶沙沙,向峻伯,等. 改进 BA 的汽车发动机 DCS 故 障 检 测 优 化 [ J ] . 机 械 设 计 与 制 造, 2020 (10) :176-181. 
[27] 祖宏亮. 基于模糊聚类的图像分割算法研究 [ D] .哈尔滨:哈尔滨理工大学,2020.
 [28] PAN W T. A new fruit fly optimization algorithm:taking the financial distress model as an example [ J ] . Knowledge-based systems,2012,26:69-74.
 [29] 霍慧慧. 果蝇优化算法及其应用研究[ D] . 太原:太 原理工大学,2015. 
[30] 宋杰,许冰,杨淼中. 基于自适应步长果蝇优化算法 图像分割 [ J] . 计 算 机 工 程 与 应 用, 2020, 56 ( 4) : 184-190. 
[31] YUAN X F, DAI X S, ZHAO J Y, et al. On a novel multi-swarm fruit fly optimization algorithm and its application[ J] . Applied mathematics and computation, 2014,233:260-271.
 [32] CHEN C. RWFOA:a random walk-based fruit fly optimization algorithm[ J] . Soft computing,2020,24( 16) : 12681-12690.
 [33] FAN Y,WANG P J,HEIDARI A A,et al. Rationalized fruit fly optimization with sine cosine algorithm:a comprehensive analysis [ J] . Expert systems with applications,2020,157:113486.
 [34] 党建武,谭凌. 改进果蝇算法优化加权极限学习机的 入侵检测[J]. 系统仿真学报,2021,33(2):331-338.
 [35] 信成涛,邹海,盛超,等. 新型果蝇优化算法的最佳 熵阈值图像分割[ J] . 微电子学与计算机,2019,36 (4) :52-56. 
[36] 王涛,RYAD C. 非线性权重和收敛因子的鲸鱼算法 [ J] . 微电子学与计算机,2019,36(1) :11-15. 
[37] 龙文,蔡绍洪,焦建军,等. 求解大规模优化问题的 改进 鲸 鱼 优 化 算 法 [ J ] . 系 统 工 程 理 论 与 实 践, 2017,37(11) :2983-2994.
 [38] FAN Q,CHEN Z J,ZHANG W,et al. ESSAWOA:enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization[ J] . Engineering with computers,2020,38:797-814.
 [39] ABDEL-BASSET M, CHANG V, MOHAMED R. HSMA_WOA:a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images [ J] . Applied soft computing,2020,95:106642. 
[40] QAIS M H,HASANIEN H M,ALGHUWAINEM S. Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators [ J] . Applied soft computing,2020,86:105937. 
[41] JADHAV A N, GOMATHI N. WGC: hybridization of exponential grey wolf optimizer with whale optimization for data clustering[ J] . Alexandria engineering journal, 2018,57(3) :1569-1584.
[42] MOSTAFA A,HASSANIEN A E,HOUSENI M,et al. Liver segmentation in MRI images based on whale optimization algorithm [ J] . Multimedia tools and applications,2017,76(23) :24931-24954. 
[43] 王斐,贾晓洪,李丽娟,等. 基于樽海鞘群算法的图 像匹配方 法 [ J] . 弹 箭 与 制 导 学 报, 2019, 39 ( 5) : 111-114.
 [44] 陈涛,王梦馨,黄湘松. 基于樽海鞘群算法的无源时 差定 位 [ J ] . 电 子 与 信 息 学 报, 2018, 40 ( 7 ) : 1591-1597.
 [45] 刘森,贾志成,陈雷,等. 基于樽海鞘群体优化非负 矩阵分解的高光谱图像解混算法[ J] . 计算机辅助 设计与图形学学报,2019,31(2) :315-323.
 [46] WU J,NAN R J,CHEN L. Improved salp swarm algorithm based on weight factor and adaptive mutation [ J] . Journal of experimental & theoretical artificial intelligence,2019,31(3) :493-515. 
[47] SHEKHAWAT S S, SHARMA H, KUMAR S, et al. BSSA: binary salp swarm algorithm with hybrid data transformation for feature selection [ J] . IEEE access, 2021,9:14867-14882.
 [48] ABUALIGAH L,SHEHAB M,DIABAT A,et al. Selection scheme sensitivity for a hybrid salp swarm algorithm: analysis and applications [ J ] . Engineering with computers,2020:1-27. 
[49] 马一鸣,石志东,赵康,等. 基于改进哈里斯鹰优化 算法的 TDOA 定位[ J] . 计算机工程,2020,46( 12) : 179-184. 
[50] 贾鹤鸣,康立飞,孙康健,等. 哈里斯鹰算法优化脉 冲耦合神经网络的图像自动分割 [ J] . 应 用 科 技, 2019,46(4) :16-20,25.
 [51] QU C W,HE W,PENG X N,et al. Harris hawks optimization with information exchange[ J] . Applied mathematical modelling,2020,84:52-75.
 [52] DU P,WANG J Z,HAO Y,et al. A novel hybrid model based on multi-objective harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting [ J] . Applied soft computing,2020,96:106620.
 [53] CHEN H L, JIAO S, WANG M J, et al. Parameters identification of photovoltaic cells and modules using diversification-enriched harris hawks optimization with chaotic drifts[ J] . Journal of cleaner production,2020, 244:118778

更新日期/Last Update: 2022-05-02