[1]靳遵龙,杨友晨,宫本希,等.瓦楞式固体氧化物燃料电池的数值研究[J].郑州大学学报(工学版),2021,42(06):43-49.[doi:10.13705/j.issn.1671-6833.2021.04.018]
 JIN Zunlong,YANG Youchen,GONG Benxi,et al.Numerical Study of Mono-block-layer-built-type Solid Oxide Fuel Cell[J].Journal of Zhengzhou University (Engineering Science),2021,42(06):43-49.[doi:10.13705/j.issn.1671-6833.2021.04.018]
点击复制

瓦楞式固体氧化物燃料电池的数值研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年06期
页码:
43-49
栏目:
出版日期:
2021-11-10

文章信息/Info

Title:
Numerical Study of Mono-block-layer-built-type Solid Oxide Fuel Cell
作者:
靳遵龙1杨友晨1宫本希2原磊1杨鹏辉1王定标1
郑州大学机械与动力工程学院;中国核电工程有限公司郑州分公司;
Author(s):
JIN Zunlong1 YANG Youchen1 GONG Benxi2 YUAN Lei1 YANG Penghui1 WANG Dingbiao1
1.School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.China Nuclear Power Enginearing CO., Ltd. Zhengzhou Branch, Zhengzhou 450052, China
关键词:
Keywords:
MOLB-type SOFC flow channel angle species distribution temperature electrical performance
DOI:
10.13705/j.issn.1671-6833.2021.04.018
文献标志码:
A
摘要:
在控制反应面积、电极和电解液层厚度相同的前提下,建立了105º、120º、135º和150º四种不同流道角的瓦楞式固体氧化物燃料电池的三维数学模型。模拟了不同流道夹角对电池内部组分分布、最大温差和电性能的影响。模拟结果表明,流道夹角的增大对燃料流道上方阳极内部的气体传输和“拐角效应”有积极影响,但对与连接体接触的阳极内部气体扩散有抑制作用。当流道夹角从105°增加到135°时,流道夹角每增加15°,电池最大温差可降低6.18%,而电性能变化不大。流道夹角为150º的瓦楞式SOFC在拐角线处的氢气摩尔分数比105º平均高出1 1.31%。此外,还比较讨论了不同燃料和空气的入口速度对瓦楞式固体氧化物燃料电池温度分布和燃料利用率的影响。燃料入口速度的增加在不同电池长度处对反应面中心线的温度分布产生不同的影响,空气入口速度的增大会降低反应面的温度,两者均会降低燃料利用率。
Abstract:
Four mono-block-layer-built-type (MOLB-type) SOFCs with different flow channel angles of 105°, 120°, 135° and 150° were modeled on the premise of the same reaction area, the same thickness of electrodes and same electrolyte layer. The effects on flow distribution, maximum temperature difference and electrical performance of these models by the various flow channel angles were simulated. The simulation results showed that the increase of flow channel angle had a positive effect on the gas transfer and corner effect in the anode above fuel flow channel but an inhibitory effect in the anode that was in contact with the interconnect. When the flow channel angle increased from 105° to 135°, the maximum temperature difference could be reduced by 6.18% for per 15° increase with rarely changing the electrical performance. The hydrogen mole fraction of MOLB-type SOFC with the flow channel angle of 150° was 11.3% higher than that of 105° on average at the corner line. Through comprehensive comparison, it was better for the flow channel angle of MOLB-type SOFC to be 135°.

参考文献/References:

[1] HASELI Y.Maximum conversion efficiency of hydrogen fuel cells[J].International journal of hydrogen energy,2018,43(18):9015-9021.

[2] BADWAL S P S,GIDDEY S,MUNNINGS C,et al.ChemInform abstract:review of progress in high temperature solid oxide fuel cells[J].ChemInform,2014,50(1):23-37.
[3] 田野,杨嘉敏,成少安,等.微生物燃料电池处理废水产电及其驱动监控系统的研究[J].郑州大学学报(工学版),2018,39(1):90-96.
[4] ANDERSSON M,YUAN J,SUNDÉN B.SOFC cell design optimization using the finite element method based CFD approach[J].Fuel cells,2014,14(2):177-188.
[5] YANG Y Z,WANG G L,ZHANG H O,et al.Computational analysis of thermo-fluid and electrochemical characteristics of MOLB-type SOFC stacks[J].Journal of power sources,2007,173(1):233-239.
[6] HWANG J J,CHEN C K,LAI D Y.Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC[J].Journal of power sources,2005,140(2):235-242.
[7] 徐刚,梁帅,刘武发,等.流动聚焦型微流控芯片微通道结构优化[J].郑州大学学报(工学版),2020,41(4):87-91.
[8] RAMwidth=5,height=14,dpi=110REZ-MINGUELA J J,MENDOZA-MIRANDA J M,MUwidth=11,height=14,dpi=110OZ-CARPIO V D,et al.Internal reforming of methane in a mono-block-layer build solid oxide fuel cell with an embedding porous pipe:numerical analysis[J].Energy conversion and management,2014,79:461-469.
[9] RAMwidth=5,height=14,dpi=110REZ-MINGUELA J J,RODRwidth=5,height=14,dpi=110GUEZ-MUwidth=11,height=14,dpi=110OZ J L,PÉREZ-GARCwidth=5,height=14,dpi=110A V,et al.Solid oxide fuel cell numerical study:modified MOLB-type and simple planar geometries with internal reforming[J].Electrochimica acta,2015,159:149-157.
[10] CRISALLE O D,韩闯,吴莉莉,等.质子交换膜燃料电池建模与控制研究进展[J].郑州大学学报(工学版),2015,36(6):61-65.
[11] HUANG H Y,HAN Z,LU S Y,et al.The analysis of structure parameters of MOLB type solid oxide fuel cell[J].International journal of hydrogen energy,2020,45(39):20351-20359.
[12] SCIACOVELLI A,VERDA V.Entropy generation analysis in a monolithic-type solid oxide fuel cell (SOFC)[J].Energy,2009,34(7):850-865.
[13] KHAZAEE I,RAVA A.Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries[J].Energy,2017,119:235-244.
[14] LIN B,SHI Y X,NI M,et al.Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels[J].International journal of hydrogen energy,2015,40(7):3035-3047.
[15] KONG W,GAO X,LIU S X,et al.Optimization of the interconnect ribs for a cathode-supported solid oxide fuel cell[J].Energies,2014,7(1):295-313.

更新日期/Last Update: 2021-12-17