[1]张涛,郭一民,李卓扬,等.碳量子点诱导人体肝癌细胞凋亡的研究[J].郑州大学学报(工学版),2020,41(05):1-7.[doi:10.13705/j.issn.1671-6833.2020.05.001]
 ZHANG Tao,GUO Yimin,LI Zhuoyang,et al.Carbon Quantum Dots as Potent Agent to Induce Apoptosis of Human Hepatoma Cells[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):1-7.[doi:10.13705/j.issn.1671-6833.2020.05.001]
点击复制

碳量子点诱导人体肝癌细胞凋亡的研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41卷
期数:
2020年05期
页码:
1-7
栏目:
出版日期:
2020-10-01

文章信息/Info

Title:
Carbon Quantum Dots as Potent Agent to Induce Apoptosis of Human Hepatoma Cells
作者:
张涛郭一民李卓扬席果果左 磊曹永平王雅泓
郑州大学材料科学与工程学院,河南郑州450001, 北京航空航天大学材料科学与工程学院,北京100191, 北京航空航天大学材料科学与工程学院,北京100191, 北京大学第一医院骨科,北京100034, 哈尔滨成程生命与物质研究所,黑龙江哈尔滨150500

Author(s):
ZHANG Tao12 GUO Yimin2 LI Zhuoyang3 XI Guoguo2 ZUO Lei2 CAO Yongping3 WANG Yahong4
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, Orthopedic Department of Peking University First Hospital, Beijing 100034, Harbin Cheng Cheng Cheng Cheng Cheng Cheng Life and Material Research Institute, Heilongjiang Harbin 150500

关键词:
Keywords:
DOI:
10.13705/j.issn.1671-6833.2020.05.001
文献标志码:
A
摘要:
采用石墨脉冲电解法制备了碳量子点溶胶 ,利用透射电子显微镜、X射线衍射仪、傅里叶变换红外光谱和荧光光谱等手段对碳量子点的形状、尺寸、结构和性能进行了表征。碳量子点为近似球形,平均粒径为6.93nm,表面含有多种富氧官能团并具有荧光特性。体外细胞毒性试验表明:当碳量子点浓度高于一定值时,溶胶能诱导人体肝癌细胞凋亡,对其具有显著的抑制作用。对碳量子点诱导凋亡后的人体肝癌细胞进行了透射电子显微镜观察,结果显示其对线粒体产生了损伤。在相同的浓度范围内,碳量子点溶胶对人体淋巴细胞几乎没有产生影响。碳量子点溶胶具有选择性诱导人体肝癌细胞凋亡的作用,对于研究新型无毒副作用的抗癌药物具有重要意义。
Abstract:
The carbon quantum dots ( CQDs) colloid solution was prepared by electrolyzing graphite with pulsecurrent. The shape, size, structure and performance of the carbon quantum dots were characterized by trans-mission electron microscopy, X -ray diffractometer, Fourier transform infrared spectroscopy and fluorescencespectroscopy , etc. The CQDs were quasi-spherical particles with an average particle size of 6.93 nm, and thesurface contained a variety of oxygen-rich functional groups and showed fluorescence characteristics. The cyto-toxicity test showed that the colloid solution could induce the apoptosis of human hepatoma cells ( HepG2cells) , and thus could effectively inhibit the proliferation of the cells, when the concentration of CQDs colloidsolution was above a certain value. Transmission electron microscopy images of HepG2 cells after apoptosis in-duced by CQDs showed that their mitochondria were damaged. There was almost no effects on human lympho-cytes in the same CQDs concentration range. The CQDs colloid solution has the effect of selectively inducingapoptosis of HepG2 cells, which is of great significance for the research of new anti-cancer drugs without sideeffects.

参考文献/References:

[1] VANKAYALA R, HWANG K C. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment[J]. Advanced materials, 2018, 30(23): 1706320.

[2] SANG W, ZHANG Z, DAI Y L, et al. Recent advances in nanomaterial-based synergistic combin-ation cancer immunotherapy[J]. Chemical society reviews, 2019, 48(14): 3771-3810.
[3] DE S, PATRA K, GHOSH D, et al. Tailoring the efficacy of multifunctional biopolymeric-graphene oxide quantum dot based nanomaterial as nanocargo in cancer therapeutic application[J]. ACS biomaterials science and engineering, 2018, 4(2): 514-531.
[4] LI H T, KANG Z H, LIU Y, et al. Carbon nanodots: synthesis, properties and applications[J]. Journal of materials chemistry, 2012, 22(46): 24230-24253.
[5] ZHU Y, LI J, LI W X, et al. The biocompatibility of nanodiamonds and their application in drug delivery systems[J]. Theranostics, 2012, 2(3): 302-312.
[6] TOLKACHOV M, SOKOLOVA V, LOZA K, et al. Study of biocompatibility effect of nanocarbon particles on various cell types in vitro[J]. Materialwissenschaft und werkstofftechnik, 2016, 47(2/3): 216-221.
[7] CHAN W C W, MAXWELL D J, GAO X H, et al. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Current opinion biotechno-logy, 2002, 13(1): 40-46.
[8] CHONG S X, JIN Y X, AU-YEUNG S C F, et al. New Pt-NNSO core anticancer agents: structural optimization and investigation of their anticancer activity[J]. Journal of inorganic biochemistry, 2017, 170: 34-45.
[9] WANG X P, GUO Q L, TAO L, et al. E platinum, a newly synthesized platinum compound, induces apoptosis through ROS-triggered ER stress in gastric carcinoma cells[J]. Molecular carcinogenesis, 2017, 56(1): 218-231.
[10] SINGH R, NALWA H S. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs[J]. Journal of biomedical nanotechnology, 2011, 7(4): 489-503.
[11] ABU-SURRAH A S, KETTUNEN M. Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin[J]. Current medicinal chemistry, 2006, 13(11): 1337-1357.
[12] KUMARI A, KUMAR A, SAHU S K, et al. Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging[J]. Sensors and actuators B: chemical, 2018, 254: 197-205.
[13] SINGH V K, SINGH V, YADAV P K, et al. Nitrogen doped fluorescent carbon quantum dots for on-off-on detection of Hg2+ and glutathione in aqueous medium: live cell imaging and IMPLICATION logic gate operation[J]. Journal of photochemistry and photobiology A: chemistry, 2019, 384: 112042.
[14] ZHOU L F, QIAO M, ZHANG L, et al. Green and efficient synthesis of carbon quantum dots and their luminescent properties[J]. Journal of luminescence, 2019, 206: 158-163.[15] LI J Z, LIU K, XUE J L, et al. CQDs preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication[J]. Journal of catalysis, 2019, 369: 450-461.
[16] SU A Q, CHEN M K, FU Z H, et al. Hybridizing engineering strategy of non-lacunary (nBu4N)4W10O32 by carbon quantum dot with remarkably enhanced visible-light-catalytic oxidation performance[J]. Applied catalysis A: general, 2019, 587: 117261.
[17] CUI B, FENG X T, ZHANG F, et al. The use of carbon quantum dots as fluorescent materials in white LEDs[J]. New carbon materials, 2017, 32(5): 385-401.
[18] WANG H, DI J, SUN Y B, et al. Biocompatible PEG-Chitosan@Carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy[J]. Advanced functional materials, 2015, 25(34): 5537-5547.
[19] ZHANG Y, SHU C Y, ZHEN M M, et al. A novel bone marrow targeted gadofullerene agent protect against oxidative injury in chemotherapy[J]. Science China materials, 2017, 60(9): 866-880.
[20] ZHOU Y, ZHEN M M, GUAN M R, et al. Amino acid modified [70] fullerene derivatives with high radical scavenging activity as promising bodyguards for chemotherapy protection[J]. Scientific reports , 2018, 8: 16573.
[21] BAKER S N, BAKER G A. Luminescent carbon nanodots: emergent nanolights[J]. Angewandte chemie international edition, 2010, 49(38): 6726-6744.
[22] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American chemical society, 2006, 128(24): 7756-7757.
[23] BOURLINOS A B, STASSINOPOULOS A, ANGLOS D, et al. Photoluminescent carbogenic dots[J]. Chemistry of materials, 2008, 20(14): 4539-4541.
[24] ZHAO Q L, ZHANG Z L, HUANG B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chemical communications, 2008,44(41): 5116-5118.
[25] LIU H P, YE T, MAO C D. Fluorescent carbon nanoparticles derived from candle soot[J]. Angewandte chemie international edition, 2007, 46(34): 6473-6475.
[26] 周军民,廖端芳,杨小平,等. Manunycin对人肝癌HepG2细胞的生长抑制作用与Ras通路的关系[J]. 癌症, 2002, 21(4): 364-368.
[27] 陈建国,宋新明. 中国肝癌发病水平的估算及分析[J]. 中国肿瘤, 2005, 14(1): 28-31.
[28] 张茜,芮瑞,李佩佩,等. 草乌多糖金属配合物的制备、表征与抗癌活性研究[J]. 郑州大学学报(工学版), 2016,37 (3): 36-39.
[29] ASHARANI P V, MUN G L K, HANDE M P, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells[J]. ACS nano, 2009, 3(2): 279-290.

更新日期/Last Update: 2020-10-23