[1]郜新军,段鹏辉,王磊.基坑开挖对邻近管线变形影响及控制措施研究[J].郑州大学学报(工学版),2020,41(05):66-71.[doi:10.13705/j.issn.1671-6833.2020.03.015]
 GAO Xinjun,DUAN Penghui,WANG Lei.The Influence of Foundation Pit Excavation on Deformation of Adjacent Underground Pipelines and Control Measures[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):66-71.[doi:10.13705/j.issn.1671-6833.2020.03.015]
点击复制

基坑开挖对邻近管线变形影响及控制措施研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41卷
期数:
2020年05期
页码:
66-71
栏目:
出版日期:
2020-10-01

文章信息/Info

Title:
The Influence of Foundation Pit Excavation on Deformation of Adjacent Underground Pipelines and Control Measures
作者:
郜新军段鹏辉王磊
郑州大学土木工程学院,河南郑州450001

Author(s):
GAO Xinjun DUAN Penghui WANG Lei
School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
Keywords:
foundation pit excavation three-dimensional finite element deformation underground pipeline reinforcement measures
DOI:
10.13705/j.issn.1671-6833.2020.03.015
文献标志码:
A
摘要:
为了探明基坑开挖引起的邻近地下管线的附加变形 ,依托实际工程,基于有限元分析方法,建立了基坑及邻近管线的三维整体数值模型,分析了深基坑开挖过程中邻近管线的位移变化规律并对其安全性进行了评价;基于评价结果,提出了注浆法、微型桩法及二者联合的3种管线加固措施,并对比分析了3种加固措施的加固效果。结果表明:随着开挖深度的不断加深,管线的水平位移和竖向位移的最大值也在不断增大,两者均出现在管线的中间位置;注浆法加固通过增大注浆区域宽度的大小,对管线水平位移有很好的抑制作用,对管线竖向位移影响很小;微型桩法对管线竖向位移有很好的抑制作用,对管线水平位移基本没有影响;而二者联合的方法可很好控制管线的水平及竖向位移,是一种较为有效的加固方法。
Abstract:
Foundation pit excavation could lead to additional deformation of adjacent underground pipelines. Based on the finite element analysis method, a three-dimensional numerical model of foundation pit and adjacent pipelines was established by relying on actual engineering; and the law of displacement changes was analyzed and the safety was evaluated in adjacent pipelines during deep foundation pit excavation. Based on the evaluation results, the reinforcement measures and effects of grouting method, micro-pile method and their combined methods were proposed and compared. The results showed that the maximum horizontal displacement and vertical displacement of the pipeline were also increased with the deepening of the excavation depth, which appeared in the middle of the pipeline. The size of the pipeline had a good inhibitory effect on the horizontal displacement of the pipeline, and had little effect on the vertical displacement of the pipeline when grouting reinforcement increased the width of the grouting zone. The micro-pile method has a good inhibitory effect on the vertical displacement of the pipeline, and had no effect on the horizontal displacement of the pipeline. The combined method could control the horizontal and vertical deformation of the pipeline well, which was a more effective method.

参考文献/References:

[1] LINEHAN P W, LONGINOW A, DOWDING C H. Pipeline response to pile driving and adjacent excavation[J]. Journal of geotechnical engineering, 1992, 118(2): 300-316.

[2] 李佳川, 夏明耀. 地下连续墙深基坑开挖与纵向地下管线保护[J].同济大学学报(自然科学版), 1995, 23(5): 499-504.
[3] 李大勇, 吕爱钟, 曾庆军. 内撑式基坑工程周围地下管线的性状分析[J]. 岩石力学与工程学报, 2004, 23(4): 682-687.
[4] 杜金龙, 杨敏. 深基坑开挖对邻近地埋管线影响分析[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3015-3020.
[5] 胡愈, 姚爱军, 张剑涛. 地铁施工引发雨污管线灾变的试验研究与数值仿真[J]. 郑州大学学报(工学版), 2019, 40(6): 90-96.
[6] 姜峥. 基坑开挖引起邻近管线变形的理论解析[J]. 地下空间与工程学报, 2014, 10(2): 362-368.
[7] YIMSIRI S, SOGA K, YOSHIZAKI K, et al. Lateral and upward soil-pipeline interactions in sand for deep embedment conditions[J]. Journal of geotechnical and geoenvironmental engineering, 2004, 130(8): 830-842.
[8] CALVETTI F, DI PRISCO C, NOVA R. Experimental and numerical analysis of soil-pipe interaction[J]. Journal of geotechnical and geoenvironmental engineering, 2004, 130(12): 1292-1299.
[9] 高冬冬, 任磊. 相邻深基坑不同土体参数对地下管线影响分析[J]. 河南建材, 2014(4): 38-40.
[10] 王磊, 贾敏才, 周健. 相邻深基坑开挖地下管线保护有限元分析[J]. 地下空间与工程学报, 2008, 4(1): 170-174, 180.
[11] 程涛, 许万辉, 胡仁杰, 等. 深基坑开挖引起邻近管线位移影响的数值分析[J]. 土木工程与管理学报, 2016, 33(6): 16-21.
[12] 施有志, 华建兵, 连宇新, 等. 地铁深基坑施工扰动下邻近管线安全评价及保护措施[J]. 工程地质学报, 2018, 26(4): 1043-1053.
[13] 施有志, 葛修润, 李秀芳, 等. 地铁深基坑施工对周边管线影响数值分析[J]. 中山大学学报(自然科学版), 2017, 56(6): 83-93.
[14] 张陈蓉, 俞剑, 黄茂松. 基坑开挖对邻近地下管线影响的变形控制标准[J]. 岩土力学, 2012, 33(7): 2027-2034.
[15] 王立峰, 陈巧红, 冯利坡. 地铁车站基坑开挖的管线变形研究[J]. 科技通报, 2019,35(10):166-170.

相似文献/References:

[1]郭红兵,王宁,吕光印..轮胎-沥青路面接触效应数值分析[J].郑州大学学报(工学版),2011,32(01):34.[doi:10.3969/j.issn.1671-6833.2011.01.009]
[2]李晶晶,李朋飞,张擎..温度梯度下水泥混凝土路面接缝张开量数值分析[J].郑州大学学报(工学版),2012,33(04):28.[doi:10.3969/j.issn.1671-6833.2012.04.007]
[3]付其林,陈拴发,彭翀..贫混凝土基层沥青路面温度-荷载耦合应力分析[J].郑州大学学报(工学版),2009,30(03):82.
 FU Qilin,CHEN Jiaofa,PENG Chong.Numerical Analysis of Coupling Stress for Asphalt Pavement on Lean Concrete Base[J].Journal of Zhengzhou University (Engineering Science),2009,30(05):82.
[4]锁利军,王秉纲,陈拴发..沥青路面多孔混凝土基层温度应力数值分析[J].郑州大学学报(工学版),2007,28(02):23.[doi:10.3969/j.issn.1671-6833.2007.02.006]
 Lock Li Army,Wang Binggang,Chen Lianfa.Numerical analysis of temperature stress of asphalt pavement porous concrete base layer[J].Journal of Zhengzhou University (Engineering Science),2007,28(05):23.[doi:10.3969/j.issn.1671-6833.2007.02.006]

更新日期/Last Update: 2020-10-23