# [1]李宗坤,宋子元,葛巍,等.基于模糊集理论的土石坝开裂破坏风险分析[J].郑州大学学报(工学版),2020,41(05):55-59.[doi:10.13705/j.issn.1671-6833.2020.03.019] 　LI Zongkun,SONG Ziyuan,GE Wei,et al.Risk Analysis of Cracking Failure of Earth-rock Dam Based on Fuzzy Set Theory[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):55-59.[doi:10.13705/j.issn.1671-6833.2020.03.019] 点击复制 基于模糊集理论的土石坝开裂破坏风险分析() 分享到： var jiathis_config = { data_track_clickback: true };

41卷

2020年05期

55-59

2020-10-01

## 文章信息/Info

Title:
Risk Analysis of Cracking Failure of Earth-rock Dam Based on Fuzzy Set Theory

Author(s):
1.School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.School of Software, Zhengzhou University, Zhengzhou 450002, China; 3.Faculty of Technology, Policy and Management, Delft University of Technology, Delft 2628 BX, the Netherlands; 4.Henan Qianping Reservoir Construction Administration, Zhengzhou 450003, China

Keywords:
DOI:
10.13705/j.issn.1671-6833.2020.03.019

A

Abstract:
Only the randomness of variables was considered in the traditional reliability analysis for crack resistance of earth-rock dam. By introducing fuzzy set theory, the randomness and fuzziness of soil strain parameters and the fuzziness of failure criterion were considered comprehensively to establish the risk assessment model of cracking failure of earth-rock dam. Furthermore, the Monte Carlo simulation method was used to solve the upper and lower limits of fuzzy risk probability based on the interval numbers which were transferred from the fuzzy parameters by the level cut set. The model was applied to the cracking risk analysis of Maojianshan reservoir dam. When the level cut set α=0.5, the fuzzy risk intervals of cracking failure for 5 and 39.5 years of dam operation were [5.23%, 7.91%] and [28.91%, 32.49%], respectively. Compared with the conclusions based on the traditional risk determination, the result showed that the conclusions based on the fuzzy risk interval were closed to the actual situation of dam cracking, which could provide reference and basis for dam structure safety assessment and management.

## 参考文献/References:

[1] 中华人民共和国水利部. 2016年全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2017.

[2] MA J, YANG J, LI S Y, et al. Application of fuzzy analytic hierarchy process in the risk assessment of dangerous small-sized reservoirs[J]. International journal of machine learning and cybernetics, 2018, 9(1): 113-123.
[3] SU H Z, HU J, WEN Z P. Service life predicting of dam systems with correlated failure modes[J]. Journal of performance of constructed facilities, 2013, 27(3): 252-269.
[4] 韩朝军,朱晟. 土质防渗土石坝坝顶裂缝开裂机理与成因分析[J]. 中国农村水利水电, 2013(8): 116-120.
[5] 李宗坤, 葛巍, 王娟, 等. 中国大坝安全管理与风险管理的战略思考[J]. 水科学进展, 2015, 26(4): 589-595.
[6] 李雷, 盛金保. 土石坝安全度综合评价方法初探[J]. 大坝观测与土工测试, 1999,23(4): 22-24,28.
[7] 刘远, 王振宇, 刘国华, 等. 土石坝失事量化风险评估方法研究[J]. 水力发电, 2005, 31(3): 44-47.
[8] 彭翀,张宗亮,张丙印,等. 高土石坝裂缝分析的变形倾度有限元法及其应用[J]. 岩土力学, 2013, 34(5): 1453-1458.
[9] 宁保辉, 来亦姝, 王春磊, 等. 前坪水库大坝应力变形及抗水力劈裂研究[J]. 人民黄河, 2019, 41(5): 122-125.
[10] 邓刚,徐泽平,吕生玺,等. 狭窄河谷中的高面板堆石坝长期应力变形计算分析[J]. 水利学报, 2008, 39(6):639-646.
[11] 张琰, 王建国, 张丙印, 等. 土坝裂缝开展的无单元法数值模拟[J]. 岩土工程学报, 2009, 31(5): 727-731.
[12] 纪宏伟. 关于中心极限定理的解读[J]. 江西电力职业技术学院学报, 2019, 32(3): 82-84, 87.
[13] 胡磊, 张云, 史卜涛, 等. 重塑黏土抗拉特性试验研究[J]. 水文地质工程地质, 2017, 44(4): 98-104, 110.
[14] 于沭, 邓刚, 温彦锋, 等. 土石坝裂缝数值模拟方法研究[J]. 水利水电技术, 2014, 45(1): 152-157.
[15] 李宗坤, 韩瑞芳, 刘文立. 土石坝渗透破坏模糊风险分析[J]. 大坝与安全, 2007(1): 17-20.
[16] 罗国武, 区军雄. 土石坝坝坡失稳模糊风险分析[J].水利与建筑工程学报, 2012, 10(1):173-176.
[17] 李宗坤, 葛巍, 王娟, 等. 土石坝建设期漫坝风险分析[J]. 水力发电学报, 2015, 34(3): 145-149.
[18] 马海云, 党建武. 基于蒙特卡罗的软件测试技术的研究与实现[J]. 郑州大学学报(工学版), 2007, 28(4): 55-58.
[19] 郭平功,童丽萍. 基于α截集法的生土窑居模糊随机可靠度分析[J]. 郑州大学学报(工学版), 2012, 33(6): 112-116.
[20] SU H Z, WEN Z P. Interval risk analysis for gravity dam instability[J]. Engineering failure analysis, 2013, 33: 83-96.
[21] 侯玉成. 土石坝健康诊断理论与方法研究[D]. 南京: 河海大学, 2005.