[1]张茂清,汪镭,崔志华,等.基于混合策略的快速非支配排序算法II[J].郑州大学学报(工学版),2020,41(04):23-27.[doi:10.13705/j.issn.1671-6833.2020.04.007]
 ZHANG Maoqing,WANG Lei,CUI Zhihua,et al.Fast Non-dominated Sorting Genetic Algorithm II Based on Hybrid Strategies[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):23-27.[doi:10.13705/j.issn.1671-6833.2020.04.007]
点击复制

基于混合策略的快速非支配排序算法II()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年04期
页码:
23-27
栏目:
出版日期:
2020-08-12

文章信息/Info

Title:
Fast Non-dominated Sorting Genetic Algorithm II Based on Hybrid Strategies
作者:
张茂清1汪镭1崔志华2郭为安3
1. 同济大学电子与信息工程学院2. 太原科技大学计算机科学与技术学院3. 同济大学中德工程学院
Author(s):
ZHANG Maoqing1WANG Lei1CUI Zhihua2GUO Weian3
1.School of Electronics and Information,Tongji University,Shanghai 201804,China;2.School of Computer Science and Technology,Taiyuan University of Science and Technology,Shanxi 030024,China;3.Sino-Germany College of Applied Sciences,Tongji University,Shanghai 201804,China
关键词:
NSGA-Ⅱ多目标优化锦标赛策略混合策略种群多样性
Keywords:
NSGA-ⅡMulti-objective optimizationtournament strategyhybrid strategypopulation diversity
DOI:
10.13705/j.issn.1671-6833.2020.04.007
文献标志码:
A
摘要:
快速非支配排序算法II(Fast Non-dominated Sorting Algorithm II, NSGA-II)是一个经典多目标优化算法,其中,锦标赛策略被用于选择交叉操作的父代个体。然而,锦标赛策略存在重复选择交叉父代个体的缺陷,并会进一步导致后代个体多样性的降低。为解决此问题,本问题出两种改进策略:第一,引入Lévy分布,对父代个体产生扰动,以此增加发现父代个体周围潜在较优个体的能力 第二,提出三父代个体的交叉策略,以降低重复选择父代个体的现象。通过将本文所提算法与其他算法对比,发现本文所提策略有效改进NSGA-II的整体性能。
Abstract:
Fast Non-dominated Sorting Algorithm II(NSGA-II)is an classics multi-objective optimization algorithm, in which tournament selection strategy is used to select parent individuals to do crossover operator. However, Tournament selection strategy has the drawback that the same individual may be selected many times, resulting in the low diversity of offspring population. To tackle this problem, this paper proposes two strategies. The first is to introduce Lévy distribution to parent individuals for increasing the probability of discovering potential better individuals around patent individuals while the second is to introduce crossover strategy with three patent individuals to decrease the probability of repeatedly selecting the same parent individuals. By comparison with other algorithms, the proposed method can efficiently improve the overall performance of NSGA-II.

参考文献/References:

[1] 崔志华,张茂清,常宇,等.基于平均距离聚类的NSGA-II[J/OL].自动化学报:1-12(2019-04-11)[2019-12-20].https://doi.org/10.16383/j.aas.c180540.

[2] 蒋佩华,华冰,黄宇,等.基于遗传算法的变质量航天器姿态控制方法[J].郑州大学学报(工学版),2019,40(4):1-7.
[3] 龙志伟,肖松毅,王晖,等.基于粒子群算法的水资源需求预测[J].郑州大学学报(工学版),2019,40(4):32-35,47.
[4] DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE transactions on evolutionary computation,2002,6(2):182-197.
[5] ZITZLER E,LAUMANNS M,THIELE L.SPEA2:improving the strength pareto evolutionary algorithm[C]//Proceedings of Conferencs on Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems.Barcelona:CIMNE,2001:5-10.
[6] GONG M G,JIAO L C,DU H F,et al.Multiobjective immune algorithm with nondominated neighbor-based selection[J].Evolutionary computation,2008,16(2):225-255.
[7] 陆金芳.改进的NSGAII算法在服装企业生产调度中的应用研究[D].广州:暨南大学,2018.
[8] 黄敏镁,袁际军,曹亮.基于NSGAII的协同产品开发项目自动协商决策[J].运筹与管理,2017,26(3):86-91,99.
[9] 陈刚,付江月.基于NSGAII的应急物流多目标LRP研究[J].软科学,2016,30(4):135-139.
[10] 宋健.多目标遗传算法的改进及其在地下水污染修复管理中的应用[D].南京:南京大学,2017.
[11] 陈辅斌,李忠学,杨喜娟.基于改进NSGA2算法的多目标柔性作业车间调度[J].工业工程,2018,21(2):55-61.
[12] 王祥.基于改进NSGA-Ⅱ算法的应急物资模块化调度问题建模与求解[D].合肥:合肥工业大学,2018.
[13] 汪文文,方玺,何朗,等.NSGA-Ⅱ算法的改进及其在应急管理中的应用[J].计算机工程与应用,2018,54(16):241-247.
[14] YANG S X,LI M Q,LIU X H,et al.A grid-based evolutionary algorithm for many-objective optimization[J].IEEE transactions on evolutionary computation,2013,17(5):721-736.
[15] ZHANG Q F,LI H.MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J].IEEE transactions on evolutionary computation,2007,11(6):712-731.
[16] CORNE D,JERRAM N,KNOWLES J,et al.PESA-II:region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the Genetic and Evolutionary Computation Conference (GECCO′2001).San Francisco:Morgan Kanfmar,2001:283-290.
[17] TIAN Y,ZHANG X Y,CHENG R,et al.A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric[C]//2016 IEEE Congress on Evolutionary Computation (CEC).Vancouver:IEEE,2016:24-29.
[18] ZITZLER E,DEB K,THIELE L.Comparison of multiobjective evolutionary algorithms:empirical results[J].Evolutionary computation,2000,8(2):173-195.
[19] COELLO C A C,CORTES N C.Solving multiobjective optimization problems using an artificial immune system[J].Genetic programming and evolvable machines,2005,6(2):163-190.

相似文献/References:

[1]肖俊明.周谦,瞿博阳,韦学辉.多目标进化算法及其在电力环境经济调度中的应用综述[J].郑州大学学报(工学版),2016,37(02):1.[doi:Multi-objective Evolutionary Algorithm and Its Ap]
 Xiao Junming,Zhou Qian,Qu Boyang,et al.Multi-objective Evolutionary Algorithm and Its Application in Electric Power Environment Economic Dispatch[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):1.[doi:Multi-objective Evolutionary Algorithm and Its Ap]
[2]王志,王朝雅,杨飞.弹性底板上的液压支架整体尺寸参数优化[J].郑州大学学报(工学版),2017,38(03):73.[doi:10.13705/j.issn.1671-6833.2016.06.002]
 Wang Zhichao,Ya Yangfei.Overall Parameter Optimizes of the Hydraulic Support on the Elastic Foundation[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):73.[doi:10.13705/j.issn.1671-6833.2016.06.002]
[3]李佳华,马连博,王兴伟,等.基于多目标蜂群进化优化的微电网能量调度方法[J].郑州大学学报(工学版),2018,39(06):50.[doi:10.13705/j.issn.1671-6833.2018.06.020]
 Li Jiahua,Malembo,Wang Xingwei,et al.A Novel Multi-objective Artificial Bee Colony Algorithm for Microgrid Energy Dispatching Model[J].Journal of Zhengzhou University (Engineering Science),2018,39(04):50.[doi:10.13705/j.issn.1671-6833.2018.06.020]
[4]章健,熊壮壮,王明东,等.基于二阶锥规划的主动配电网动态无功优化[J].郑州大学学报(工学版),2019,40(01):32.[doi:10.13705/j.issn.1671-6833.2019.01.003]
 Zhang Jian,Bear strong,Wang Mingdong,et al.Dynamic Reactive Power Optimization in Active Distribution Network Based on Second-Order Cone Programming[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):32.[doi:10.13705/j.issn.1671-6833.2019.01.003]
[5]闫李,李超,柴旭朝,等.基于多学习多目标鸽群优化的动态环境经济调度[J].郑州大学学报(工学版),2019,40(04):2.[doi:10.13705/j.issn.1671-6833.2019.04.023]
 Yan Li,Li Chao,Chai Xuchao,et al.Dynamic Economic Emission Dispatch Based On Multiple Learning Multi-objective Pigeon-inspired Optimization[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):2.[doi:10.13705/j.issn.1671-6833.2019.04.023]
[6]刘可,巩敦卫.用于指尖定位的多目标分布估计算法[J].郑州大学学报(工学版),2019,40(04):12.[doi:10.13705/j.issn.1671-6833.2019.04.011]
 Liu Ke,Gong Dunwei.A Multi-objective Estimation of Distribution Algorithm for the Fingertip Localization[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):12.[doi:10.13705/j.issn.1671-6833.2019.04.011]
[7]朱晓东,王颖,杨之乐,等.启发式多目标优化算法在能源和电力系统中的典型应用综述[J].郑州大学学报(工学版),2019,40(05):1.[doi:10.13705/j.issn.1671-6833.2019.05.010]
 Zhu Xiaodong,Wang Ying Young Joy Guo Yuanjun.A review of typical applications of heuristic multi-objective optimization algorithms in energy and power systems[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):1.[doi:10.13705/j.issn.1671-6833.2019.05.010]
[8]张茂清,李东洋,胡博,等.基于维度扰动的快速非支配排序遗传算法II[J].郑州大学学报(工学版),2020,41(01):38.[doi:10.13705/j.issn.1671-6833.2020.01.001]
 Zhang Maoqing,Li Dongyang,Huber Wang Lei,et al.Non-dominated Sorting Genetic Algorithm II with Dimensionality Perturbation[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):38.[doi:10.13705/j.issn.1671-6833.2020.01.001]
[9]华一村,刘奇奇,郝矿荣,等.非规则Pareto前沿面多目标进化优化算法研究综述[J].郑州大学学报(工学版),2021,42(01):1.[doi:10.13705/j.issn.1671-6833.2021.01.001]
 HUA Yicun,LIU Qiqi,HAO Kuangrong,et al.A Survey of Evolutionary Algorithms for Multi-objective Optimization Problems with Irregular Pareto Fronts[J].Journal of Zhengzhou University (Engineering Science),2021,42(04):1.[doi:10.13705/j.issn.1671-6833.2021.01.001]
[10]刘家学,李文华,朱铁稳.飞机元器件可靠性的优化模型[J].郑州大学学报(工学版),1998,19(02):115.
 [J].Journal of Zhengzhou University (Engineering Science),1998,19(04):115.

更新日期/Last Update: 2020-10-06