[1]郭美圆,曹晨璐,曹春梅,等.石墨烯为载体的Pd/SnO2纳米复合材料的制备及其对CO气敏性能研究[J].郑州大学学报(工学版),2020,41(05):15-20.[doi:10.13705/j.issn.1671-6833.2019.05.021]
 GUO Meiyuan,CAO Chenlu,CAO Chunmei,et al.Synthesis of Pd Doped SnO2/Graphene Composites and Its Gas Sensing Properties to CO[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):15-20.[doi:10.13705/j.issn.1671-6833.2019.05.021]
点击复制

石墨烯为载体的Pd/SnO2纳米复合材料的制备及其对CO气敏性能研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41卷
期数:
2020年05期
页码:
15-20
栏目:
出版日期:
2020-10-01

文章信息/Info

Title:
Synthesis of Pd Doped SnO2/Graphene Composites and Its Gas Sensing Properties to CO
作者:
郭美圆曹晨璐曹春梅卢启芳詹自力高健
郑州大学化工学院,河南郑州450001

Author(s):
GUO Meiyuan CAO Chenlu CAO Chunmei LU Qifang ZHAN Zili GAO Jian
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
Keywords:
SnO2 nanoparticles noble metal Pd graphene CO sensor
DOI:
10.13705/j.issn.1671-6833.2019.05.021
文献标志码:
A
摘要:
采用沉淀法和超声浸渍法制备出不同石墨烯(G)载体量(G x% )的二氧化锡(SnO 2 )复合材料,并成功负载贵金属钯(Pd)得到Pd 1.5% /SnO 2 /G x% ,复合材料。分析比较Pd 1.5% /SnO 2 纳米复合材料及其石墨烯载体量分别为0.1%、0.25%、0.5%、0.75%(质量分数)的Pd 1.5% /SnO 2 /G x% 复合材料对CO气敏性能。结果表明:石墨烯的加入在抑制SnO2纳米颗粒团聚的同时也提高了其均匀分散程度,从而提升Pd 1.5% /SnO 2 /G x% 对CO的灵敏度。其中,Pd 1.5% /SnO 2 /G 0.25% 对CO表现出更好的传感特性。在最佳工作温度75 ℃ 下,该复合材料对115mg/m 3 CO的灵敏度值为56.2,响应时间和恢复时间分别为7s和10s,且当CO质量浓度降至5.75mg/m 3 时,该传感器仍对CO具有较好响应。
Abstract:
SnO2 nanoparticles doped with different amounts of graphene were prepared by precipitation and ultrasonic impregnation methods. Pd1.5%/SnO2/Gx% composites were obtained by doping Pd using the impregnation method. The CO sensing properties of Pd1.5%/SnO2/Gx% nanocomposites doped with graphene at different ratio of 0.1%, 0.25%, 0.5% and 0.75% (mass fraction) were studied. The results showed that graphene could improve the sensitivity of Pd1.5%/SnO2/Gx% to CO by reducing the agglomeration and enhancing the dispersion of SnO2 nanoparticles. So Pd1.5%/SnO2/G0.25% had the excellent CO sensing properties. The optimum operating temperature was 75 ℃. When the CO concentration was 115 mg/m3, the gas response could reach 56.2 and response, recovery time was 7 s and 10 s, respectively. The sample Pd1.5%/SnO2/G0.25% still had gas-sensing performance when the CO concentration was only 5.75 mg/m3.

参考文献/References:

[1] 付永春. SnO2基CO传感器的研究进展[J]. 湛江师范学院学报, 2010, 31(3): 53-60.

[2] BLUMENTHAL I. Carbon monoxide poisoning[J]. Journal of the royal society of medicine, 2001, 94(6): 270-272.
[3] KOROTCENKOV G, BRINZARI V, BORIS Y, et al. Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis[J]. Thin solid films, 2003, 436(1): 119-126.
[4] LOU X W, WANG Y, YUAN C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Advanced materials, 2006, 18(17): 2325-2329.[5] MANJULA P, BOPPELLA R, MANORAMA S V. A facile and green approach for the controlled synthesis of porous SnO2 nanospheres: application as an efficient photocatalyst and an excellent gas sensing material[J]. ACS applied materials & interfaces, 2012, 4(11): 6252-6260.
[6] KOWAL A, LI M, SHAO M, et al. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2[J]. Nature materials, 2009, 8(4): 325-330.
[7] FUJIHARA S, MAEDA T, OHGI H, et al. Hydrothermal routes to prepare nanocrystalline mesoporous SnO2 having high thermal stability[J]. Langmuir: the ACS journal of surfaces and colloids, 2004, 20(15): 6476-6481.
[8] ZHUKOVA A A, RUMYANTSEVA M N, ZAYTSEV V B, et al. Pd nanoparticles on SnO2(Sb) whiskers: aggregation and reactivity in CO detection[J]. Journal of alloys and compounds, 2013, 565: 6-10.
[9] KIM J H, KIM S S. Realization of ppb-Scale toluene-sensing abilities with Pt-functionalized SnO2-ZnO core-shell nanowires[J]. ACS applied materials & interfaces, 2015, 7(31): 17199-17208.
[10] ZHOU X, SHEN Q, YUAN K D, et al. Unraveling charge state of supported Au single-atoms during CO oxidation[J]. Journal of the american chemical society, 2018, 140(2): 554-557.
[11] KOLHE P S, KOINKAR P M, MAITI N, et al. Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties[J]. Physica B: condensed matter, 2017, 524: 90-96.
[12] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of graphene[J]. Chemical reviews, 2010, 110(1): 132-145.
[13] LIN R M. Nanoscale vibration characterization of multi-layered graphene sheets embedded in an elastic medium[J]. Computational materials science, 2012, 53(1): 44-52.
[14] 叶宗标, 郑伟健, 太惠玲, 等. 石墨烯-氧化钛复合氨敏感材料的制备与特性研究[J]. 郑州大学学报(工学版), 2016, 37(4): 49-52.
[15] CAO Y L, LI Y Z, JIA D Z, et al. Solid-state synthesis of SnO2-graphene nanocomposite for photocatalysis and formaldehyde gas sensing[J]. RSC advances, 2014, 4(86): 46179-46186.

更新日期/Last Update: 2020-10-23