[1]高金峰,庞昊,杜耀恒.基于GRU网络的配电网故障数量等级预测方法[J].郑州大学学报(工学版),2019,40(05):38-43.[doi:10.13705/j.issn.1671-6833.2019.05.007]
 Gao Jinfeng,Pang Hao,Du Yaoheng.Prediction method of distribution network fault quantity level based on GRU network[J].Journal of Zhengzhou University (Engineering Science),2019,40(05):38-43.[doi:10.13705/j.issn.1671-6833.2019.05.007]
点击复制

基于GRU网络的配电网故障数量等级预测方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年05期
页码:
38-43
栏目:
出版日期:
2019-10-23

文章信息/Info

Title:
Prediction method of distribution network fault quantity level based on GRU network
作者:
高金峰1庞昊1杜耀恒2
郑州大学产业技术研究院,河南郑州450001; 国家电网烟台供电公司,山东烟台264000
Author(s):
Gao Jinfeng 1Pang Hao 1Du Yaoheng 2
1. Zhengzhou University Industrial Technology Research Institute; 2. State Grid Yantai Power Supply Company
关键词:
配电网故障数量等级循环神经网络GRU网络历史依赖性相关性
Keywords:
number of faults in distribution network RNN GRU neural network historical dependence rel�1Fevance
DOI:
10.13705/j.issn.1671-6833.2019.05.007
文献标志码:
A
摘要:
配电网故障数量的多少直接影响配电网的运行维护与用户的用电体验,目前业界关于配电网 故障数量等级预测的研究较少.给出了一种基于GRU网络的配电网故障数据分析与故障数量等级预测 方法.通过条件嫡来衡量配电网故障数量等级的历史依赖性,采用距离相关系数对诸多气象特征因素进 行相关性强弱考察,筛选出最优特征子集,最后通过训练GRU网络实现了配电网故障数量等级的预测. 算例结果证明了预测方法的有效性.
Abstract:
The number of faults in distribution network was a direct impact on the operation and maintenance of distribution network and the users power consumption experience. At present, there were few stadies on the prediction of the number of faults in distribution network. To measure the historical dependence of distribution network fault magnitude, the optimal feature subset was selected by using the distance correlation coefficient to investigate the correlation of many meteorological features. Finally, the GRU neural network was trained to predict the fault magnitude of distribution network accurately. The results proved the feasibility of this method.

相似文献/References:

[1]李章晓,宋微,田野.基于深度学习和进化计算的外汇预测与投资组合优化[J].郑州大学学报(工学版),2019,40(01):92.[doi:10.13705/j.issn.1671-6833.2019.01.014]
 Li Zhangxiao,Song Wei,Tian Ye.Exchange Rate Forecasting and Portfolio Optimization Based on Deep Learning and Evolutionary Computation[J].Journal of Zhengzhou University (Engineering Science),2019,40(05):92.[doi:10.13705/j.issn.1671-6833.2019.01.014]
[2]卢晨辉,冯硕,易爱华,等.基于深度学习的加油站销量预测与营销策略应用研究[J].郑州大学学报(工学版),2022,43(01):1.[doi:10.13705/j.issn.1671-6833.2022.01.014]
 LU Chenhui,FENG Shuo,YI Aihua,et al.Gasoline Station Sales Prediction Method Based on Deep Learning and Its Application of Promotion Strategy[J].Journal of Zhengzhou University (Engineering Science),2022,43(05):1.[doi:10.13705/j.issn.1671-6833.2022.01.014]

更新日期/Last Update: 2019-10-26