参考文献/References:
[1] DING Y J, TANG J J, GUO F. Identification of drug-target interactions via multi-view graph regularized link propagation model[J]. Neurocomputing, 2021, 461: 618-631.
[2] HE T, HEIDEMEYER M, BAN F Q, et al. SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines[J]. Journal of Cheminformatics, 2017, 9(1): 24.
[3] ÖZTÜRK H, ÖZGÜR A, ÖZKIRIMLI E. DeepDTA: deep drug-target binding affinity prediction[J]. Bioinformatics, 2018, 34(17): i821-i829.
[4] ZHAO Q C, XIAO F, YANG M Y, et al. AttentionDTA: prediction of drug-target binding affinity using attention model[C]//2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Piscataway: IEEE, 2019: 64-69.
[5] YUAN W N, CHEN G X, CHEN C Y. FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction[J]. Briefings in Bioinformatics, 2022, 23(1): 1-13.
[6] ZHAO L L, WANG J J, PANG L, et al. GANsDTA: predicting drug-target binding affinity using GANs[J]. Frontiers in Genetics, 2020, 10: 1243.
[7] NGUYEN T, LE H, QUINN T P, et al. GraphDTA: predicting drug-target binding affinity with graph neural networks[J]. Bioinformatics, 2021, 37(8): 1140-1147.
[8] MUKHERJEE S, GHOSH M, BASUCHOWDHURI P. DeepGLSTM: deep graph convolutional network and LSTM based approach for predicting drug-target binding affinity[C]//SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics, 2022: 729-737.
[9] 程竹平, 李建华. 基于图卷积和双线性注意力网络的药物靶标亲和力预测[J]. 华东理工大学学报(自然科学版), 2024, 50(4): 594-601.
CHENG Z P, LI J H. Drug-target affinity prediction based on graph convolution network and bilinear attention network[J]. Journal of East China University of Science and Technology, 2024, 50(4): 594-601.
[10] HE H H, CHEN G X, CHEN C Y. NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug-target binding affinity prediction[J]. Bioinformatics, 2023, 39(6): 1-9.
[11] YANG X X, YANG G K, CHU J. GraphCL-DTA: a graph contrastive learning with molecular semantics for drug-target binding affinity prediction[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(8): 4544-4552.
[12] WANG J R, XIAO Y H, SHANG X Q, et al. Predicting drug-target binding affinity with cross-scale graph contrastive learning[J]. Briefings in Bioinformatics, 2024, 25(1): 1-9.
[13] BI X P, ZHANG S G, MA W J, et al. HISIF-DTA: a hierarchical semantic information fusion framework for drug-target affinity prediction[J]. IEEE Journal of Biomedical and Health Informatics, 2025, 29(3): 1579-1590.
[14] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-09-09)[2025-09-04]. https://arxiv.org/abs/1609.02907.
[15] RAMSUNDAR B, EASTMAN P, WALTERS P, et al. Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more[M]. Sebastopol: O’Reilly, 2019.
[16] JIANG M J, LI Z, ZHANG S G, et al. Drug-target affinity prediction using graph neural network and contact maps[J]. RSC Advances, 2020, 10(35): 20701-20712.
[17] VERKUIL R, KABELI O, DU Y, et al. Language models generalize beyond natural proteins[EB/OL]. (2022-12-22)[2025-09-01]. https://www.biorxiv.org/content/10.1101/2022.12.21.521521v1.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2023-08-02)[2025-09-04]. https://arxiv.org/abs/1706.03762.
[19] YIN W P, KANN K, YU M, et al. Comparative study of CNN and RNN for natural language processing[EB/OL]. (2017-02-07)[2025-09-04]. https://arxiv.org/abs/1702.01923.
[20] DAVIS M I, HUNT J P, HERRGARD S, et al. Comprehensive analysis of kinase inhibitor selectivity[J]. Nature Biotechnology, 2011, 29(11): 1046-1051.
[21] TANG J, SZWAJDA A, SHAKYAWAR S, et al. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis[J]. Journal of Chemical Information and Modeling, 2014, 54(3): 735-743.
[22] ALLEN D M. Mean square error of prediction as a criterion for selecting variables[J]. Technometrics, 1971, 13(3): 469-475.
[23] GÖNEN M, HELLER G. Concordance probability and discriminatory power in proportional hazards regression[J]. Biometrika, 2005, 92(4): 965-970.
[24] YANG Z D, ZHONG W H, ZHAO L, et al. MGraphD-TA: deep multiscale graph neural network for explainable drug-target binding affinity prediction[J]. Chemical Science, 2022, 13(3): 816-833.
[25] QIU W J, LIANG Q L, YU L Y, et al. LSTM-SAGDTA: predicting drug-target binding affinity with an attention graph neural network and LSTM approach[J]. Current Pharmaceutical Design, 2024, 30(6): 468-476.
[26] HUANG J P, SUN C, LI M L, et al. Structure-inclusive similarity based directed GNN: a method that can control information flow to predict drug-target binding affinity[J]. Bioinformatics, 2024, 40(10): 1-11.