[1]张超,张磊,夏洋洋,等.基于界面形貌三维重构的高聚物-粉土剪切特性分析[J].郑州大学学报(工学版),2026,47(XX):1-10.[doi:10.13705/j.issn.1671-6833.2025.05.010]
 ZHANG Chao,ZHANG Lei,XIA Yangyang,et al.Analysis of Polymer-silt Soil Shear Properties Based on Three-dimensional Reconstruction of Interfacial Morphology[J].Journal of Zhengzhou University (Engineering Science),2026,47(XX):1-10.[doi:10.13705/j.issn.1671-6833.2025.05.010]
点击复制

基于界面形貌三维重构的高聚物-粉土剪切特性分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年XX
页码:
1-10
栏目:
出版日期:
2026-09-10

文章信息/Info

Title:
Analysis of Polymer-silt Soil Shear Properties Based on Three-dimensional Reconstruction of Interfacial Morphology
作者:
张超1234 张磊123 夏洋洋123 王翠霞123 刘铨鸿5 方宏远1 23 4 Timon Rabczuk6 王复明1234
1. 郑州大学 水利与交通学院,河南 郑州 450001;2. 重大基础设施检测修复技术国家地方联合工程实验室 ,河南 郑州 450001;3. 地下工程灾变防控省部共建协同创新中心,河南 郑州 450001;4. 黄河实验室 ( 河南) ,河南 郑州 450001;5 . 河南开放大学, 建筑工程与智能建造学院,河南 郑州 450008;6. Institute of Structural Mechanics, Bauhaus University Weimar, Weimar 99425, Germany
Author(s):
ZHANG Chao1234 ZHANG Lei123 XIA Yangyang123 WANG Cuixia123 LIU Quanhong5 FANG Hongyuan1234 Timon Rabczuk6 WANG Fuming1
关键词:
高聚物-粉土界面剪切三维激光扫描界面形貌数值模拟
Keywords:
polymer-silt soil interfacial shear three-dimensional laser scanning interfacial morphology numerical simulation
分类号:
TU432
DOI:
10.13705/j.issn.1671-6833.2025.05.010
文献标志码:
A
摘要:
为探究高聚物密度对高聚物-粉土界面接触形态及界面剪切特性的影响机制,采用界面无损分离与三维激光扫描相结合的方法,开展了高聚物-粉土三维界面形貌特征扫描试验,得到了不同密度下的界面粗糙度参数。结合界面直剪试验,研究了不同高聚物密度影响下高聚物-粉土界面粗糙度参数、界面剪切应力-位移关系、界面剪切力学强度参数及界面粗糙度参数与界面剪切强度的变化规律。在此基础上,利用COMSOL软件建立了一种随机三维粗糙界面有限元模型,进一步探讨了不同界面粗糙度下高聚物-粉土界面剪切损伤机制。结果表明:基于三维界面重构的有限元数值模型可准确地预测不同密度下高聚物-粉土界面剪切应力-位移关系,且高聚物-粉土界面在直剪荷载下的主要损伤特征表现为界面凸起处形成的应力集中,密度越大凸起点越多,应力集中越明显。高聚物-粉土界面粗糙度和剪切强度均随高聚物密度的增大而增大,且高聚物-粉土界面粗糙度和剪切强度满足线性关系。
Abstract:
To investigate the influence mechanism of polymer density on the contact morphology and interfacial shear properties of polymer–silt soil interface, using a non-destructive method for separating interfaces, combined with three-dimensional laser scanning, the scanning test of three-dimensional interfacial topographic features of polymer-silt was carried out, and the interfacial roughness parameters were obtained under different densities. Combined with the interfacial direct shear test, investigated under the influence of different polymer density, polymer-silt interface roughness parameters, interfacial shear stress-displacement relationship, interfacial shear mechanical strength parameters, and the change laws of interfacial roughness parameters and interfacial shear strength. Based on this, a finite element model of a random three-dimensional rough interfacial was established by using COMSOL software to further explore the shear damage mechanism of polymer-silt soil interface under different interfacial roughness. The results show that the finite element numerical model based on three-dimensional interface reconstruction can accurately predict the shear stress-displacement relationship of polymer–silt soil interface under different densities, and the main damage feature of polymer–silt soil interface under direct shear load is the stress concentration formed at the interface bumps, and the greater the density, the more the bumps, and the more obvious the stress concentration. The roughness and shear strength of the polymer-silt soil interface increase with the increase of polymer density, and the roughness and shear strength of the polymer-silt soil interface satisfy the linear relationship.

参考文献/References:

[1] 许传桂. 我国病险水库的现状[J]. 大坝与安全, 2000, 14(3): 52-53.
XU C G. The current situation of diseased dams in China[J]. Large dam & safety, 2000, 14(3): 52-53.
[2] 王复明, 徐建国, 杨柳, 等. 堤坝高聚物防渗墙静力荷载试验与数值分析[J]. 建筑科学与工程学报, 2015, 32(2): 27-34.
WANG F M, XU J G, YANG L, et al. Static load experiment and numerical analysis of polymer diaphragm wall for earth-rock dams[J]. Journal of Architecture and Civil Engineering, 2015, 32(2): 27-34.
[3] LI J, LI J, ZHANG J W, et al. Static and dynamic properties study on interface between new polymer materials and silty clay based on ring shear tests[J]. Polymers, 2023, 15(3): 634.
[4] 徐建国, 王复明, 钟燕辉, 等. 静动力荷载下土石坝高聚物防渗墙受力特性分析[J]. 岩土工程学报, 2012, 34(9): 1699-1704.
XU J G, WANG F M, ZHONG Y H, et al. Stress analysis of polymer diaphragm wall for earth-rock dams under static and dynamic loads[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1699-1704.
[5] LI M J, FANG H Y, DU M R, et al. The behavior of polymer-bentonite interface under shear stress[J]. Construction and Building Materials, 2020, 248: 118680.
[6] 林沛元, 郭潘峰, 郭成超, 等. 钢板、高聚物、土不同材料界面剪切特性试验研究[J]. 岩土工程学报, 2023, 45(1): 85-93.
LIN P Y, GUO P F, GUO C C, et al. Experimental study on interfacial shear properties of steel plate, polymer and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 85-93.
[7] MURALI N, GUJAR P, GHOSH P. Performance of clay-epoxy interface at different points on proctor curve[J]. Applied Clay Science, 2022, 226: 106553.
[8] 王刚, 张书博, 连莲, 等. 基于零厚度黏聚力单元节理面剪切破坏机理宏细观研究[J]. 岩土工程学报, 2019, 41(12): 2224-2232.
WANG G, ZHANG S B, LIAN L, et al. Macro-micro study on shear failure mechanism of rock joint based on zero-thickness cohesive element[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2224-2232.
[9] 蒋宇静, 张孙豪, 栾恒杰, 等. 循环载荷对岩石节理宏细观剪切特性影响的模拟研究[J]. 煤炭学报, 2023, 48(1): 199-211.
JIANG Y J, ZHANG S H, LUAN H J, et al. Numerical investigation on the effect of cyclic loading on macro-meso shear characteristics of rock joints[J]. Journal of China Coal Society, 2023, 48(1): 199-211.
[10] BADIKA M, EL MERABI B, CAPDEVIE LLE S, et al. Influence of concrete-rock bonds and roughness on the shear behavior of concrete-rock interfaces under low normal loading, experimental and numerical analysis[J]. Applied Sciences, 2022, 12(11): 5643.
[11] LIU X W, DENG W, LIU B, et al. Influence analysis on the shear behaviour and failure mode of grout-filled jointed rock using 3D DEM coupled with the cohesive zone model[J]. Computers and Geotechnics, 2023, 155: 105165.
[12] ZHANG S B, ZHENG X, WANG C S, et al. Shear behavior and asperity damage of 3D rough joints under CNS boundary conditions based on CZM simulation[J]. Sustainability, 2023, 15(6): 5064.
[13] QIN L, GUO C C, SUN W, et al. Experimental investigation on the interfacial shear bond performance of non-water reacting polymer and concrete[J]. Construction and Building Materials, 2022, 331: 127351.
[14] PAN W, ZHANG C, WANG C X, et al. Compressive fatigue resistance and related microscopic mechanisms in foamed polyurethane grouting materials for roadbed rehabilitation[J]. International Journal of Fatigue, 2023, 171: 107593.
[15] 王娟, 方宏远, 余自森, 等. 高聚物碎石混合料单轴受压性能试验研究[J]. 建筑材料学报, 2019, 22(2): 320-326.
WANG J, FANG H Y, YU Z S, et al. Experimental study on uniaxial compressive properties of polymer gravel mixtures[J]. Journal of Building Materials, 2019, 22(2): 320-326.
[16] 石明生. 高聚物注浆材料特性与堤坝定向劈裂注浆机理研究[D]. 大连: 大连理工大学, 2011.
SHI M S. Research on polymer grouting material properties and directional fracturing grouting mechanism for dykes and dams[D]. Dalian: Dalian University of Technology, 2011.
[17] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019.
[18] HUANG H W, ZHAN Y, TAO Y L, et al. Three-dimensional characterization of bonding features for asphalt pavement interface using a novel interlayer isolation film[J]. Construction and Building Materials, 2021, 311: 125301.
[19] Geometrical product specifications (GPS) - Surface texture: Areal-Part 1: Indication of surface texture: ISO25178-1-2016[S]. Geneva, Switzerland: International Organization for Standardization, 2016, 15. https://www.iso.org/standard/46065.html.
[20] LI X X, WANG F M, FANG H Y, et al. Bond behavior between concrete and self-expansion polymer material under normal pressures[J]. Advances in Civil Engineering, 2021, 2021(1): 6675102.
[21] 李斌, 方宏远, 王复明. 脱空排水管道高聚物修复前后力学特性分析[J]. 郑州大学学报(工学版), 2019, 40(1): 62-66.
LI B, FANG H Y, WANG F M. Analysis of the mechanical characteristics of disengaging drainage pipe before and after polymer repairing[J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(1): 62-66.

备注/Memo

备注/Memo:
收稿日期:2025-00-00;修订日期:2025 -03-28
基金项目:国家自然科学基金资助项目 (52178368) ; 河南省重点研发专项项目 ( 241111322700) ; 河南省高校科技创新团队和人才培养计划项目 (23IRTSTHN004, 23HASTIT007) ; 中原英才计划—中原青年拔尖人才项目
作者简介:张超(1984— ) ,男,山东烟台人,郑州大学教授,博士,博 士生导师,主要从事工程修复材料多尺度物理力学性能及其提升、非开挖修复理论与技术方面的研究,E-mail: chao. zhang.zzu@outlook.com。
更新日期/Last Update: 2026-01-15