参考文献/References:
[1] MERADI S, LARIBI S, BOUSLIMANI S, et al. Analysis of failure in low-voltage terminal connections and fault classification in power transformer using infrared thermography [J]. Journal of Failure Analysis and Prevention, 2024, 24(2): 547-558.
[2] 肖懿, 罗丹, 蒋沁知, 等. 基于温度概率密度的变电站高压设备故障热红外图像识别方法 [J]. 高电压技术, 2022, 48(1): 307-318.
XIAO Y, LUO D, JIANG Q Z, et al. Thermal infrared image recognition method for high voltage equipment failure in substation based on temperature probability density [J]. High Voltage Engineering, 2022, 48(1): 307-318.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 580-587.
[4] GIRSHICK R. Fast R-CNN [C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 1440-1448.
[5] LIU W, ANGELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]//Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788.
[7] REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 6517-6525.
[8] REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08) [2025-02-01]. https: //arxiv. org/abs/1804. 02767.
[9] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. (2020-04-23) [2025-02-01]. https: //arxiv. org/abs/2004. 10934.
[10] CHENG Y, XIA L Z, YAN B, et al. A defect detection method based on faster RCNN for power equipment [J]. Journal of Physics: Conference Series, 2021, 1754(1): 012025.
[11] 王勋, 毛华敏, 李唐兵, 等. 基于迁移学习和R-FCN的电力设备红外图像识别算法 [J]. 传感器与微系统, 2021, 40(1): 147-150.
WANG X, MAO H M, LI T B, et al. Recognition algorithm for infrared image of power equipment based on transfer learning and R-FCN [J]. Transducer and Microsystem Technologies, 2021, 40(1): 147-150.
[12] 王永平, 张红民, 彭闯, 等. 基于YOLO v3的高压开关设备异常发热点目标检测方法 [J]. 红外技术, 2020, 42(10): 983.
WANG Y P, ZHANG H M, PENG C, et al. The target detection method for abnormal heating point of high-voltage switchgear based on YOLO v3 [J]. Infrared Technology, 2020, 42(10): 983.
[13] 李北明, 金荣璐, 徐召飞, 等. 基于特征蒸馏的改进Ghost-YOLOv5红外目标检测算法 [J]. 郑州大学学报(工学版), 2022, 43(1): 20-26.
LI B M, JIN R L, XU Z F, et al. An improved ghost-YOLOv5 infrared target detection algorithm based on feature distillation [J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(1): 20-26.
[14] 魏明军, 王模涵, 刘亚志, 等. 基于特征融合和混合注意力的小目标检测 [J]. 郑州大学学报(工学版), 2024, 45(3): 72-79.
WEI M J, WANG M H, LIU Y Z, et al. Small object detection based on feature fusion and mixed attention [J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(3): 72-79.
[15] HE K M, SUN J. Fast Guided Filter [EB/OL]. (2015-05-05) [2025-02-01]. https: //arxiv. org/abs/1505. 00996.
[16] 马敏慧, 王红茹, 王佳. 基于改进的MSRCR-CLAHE融合的水下图像增强算法 [J]. 红外技术, 2023, 45(1): 23-32.
MA M H, WANG H R, WANG J. An underwater image enhancement algorithm based on improved MSRCR-CLAHE fusion [J]. Infrared Technology, 2023, 45(1): 23-32.
[17] WANG C C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism [EB/OL]. (2023-09-20) [2025-02-01]. https: //arxiv. org/abs/2309. 11331.
[18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 2999-3007.
[19] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 7464-7475.
相似文献/References:
[1]李北明,金荣璐,徐召飞,等.基于特征蒸馏的改进Ghost-Yolov5红外目标检测算法[J].郑州大学学报(工学版),2022,43(01):20.[doi:10.13705/j.issn.1671-6833.2022.01.013]
LI Beiming,JIN Ronglu,XU Zhaofei,et al.An Improved Ghost-YOLOv5 Infrared Target Detection Algorithm Based on Feature Distillation[J].Journal of Zhengzhou University (Engineering Science),2022,43(XX):20.[doi:10.13705/j.issn.1671-6833.2022.01.013]
[2]许珉,王侠,李耀,等.实用短路计算与电气设备选择一体化程序研究[J].郑州大学学报(工学版),2005,26(02):39.[doi:10.3969/j.issn.1671-6833.2005.02.010]
Xu Min,Wang Xia,LI Yao,et al.Research on the integration of practical short circuit calculation and electrical equipment selection[J].Journal of Zhengzhou University (Engineering Science),2005,26(XX):39.[doi:10.3969/j.issn.1671-6833.2005.02.010]
[3]廖晓辉,谢子晨,路铭硕.基于 YOLOv5s 和 Android 部署的电气设备识别[J].郑州大学学报(工学版),2024,45(01):122.[doi:10.13705/j.issn.1671-6833.2024.01.004]
LIAO Xiaohui,XIE Zichen,LU Mingshuo.Electrical Equipment Identification Based on YOLOv5s and Android Deployment[J].Journal of Zhengzhou University (Engineering Science),2024,45(XX):122.[doi:10.13705/j.issn.1671-6833.2024.01.004]