[1]廖晓辉,熊宗毅,孔斌,等.基于数据增强与改进YOLOv5的电气设备红外图像检测[J].郑州大学学报(工学版),2026,47(XX):1-8.[doi:10. 13705 / j. issn. 1671-6833. 2025. 05. 014]
 LIAO Xiaohui,XIONG Zongyi,KONG Bin,et al.Infrared Image Detection of Electrical Equipment Based on Data Enhancement and Improved YOLOv5[J].Journal of Zhengzhou University (Engineering Science),2026,47(XX):1-8.[doi:10. 13705 / j. issn. 1671-6833. 2025. 05. 014]
点击复制

基于数据增强与改进YOLOv5的电气设备红外图像检测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年XX
页码:
1-8
栏目:
出版日期:
2026-09-10

文章信息/Info

Title:
Infrared Image Detection of Electrical Equipment Based on Data Enhancement and Improved YOLOv5
作者:
廖晓辉熊宗毅 孔斌谢子晨刘向阳郜子阳
郑州大学 电气与信息工程 学院,河南 郑州 450001
Author(s):
LIAO Xiaohui XIONG Zongyi KONG Bin XIE Zichen LIU Xiangyang GAO Ziyang
School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
电气设备数据增强GD机制Focal-CIoU损失函数红外图像识别
Keywords:
electrical equipment data augmentation GD mechanism Focal-CIoU loss function infrared image recognition
分类号:
TP391.4TM63
DOI:
10. 13705 / j. issn. 1671-6833. 2025. 05. 014
文献标志码:
A
摘要:
为了使电气设备发热缺陷的检测方法更加完善,提高算法对电气设备红外图像的识别精度,提出了基于数据增强与改进YOLOv5的电气设备红外图像检测方法。首先,针对电气设备红外图像信噪比低、对比度低的问题,采用快速引导滤波算法对数据集中的红外图像进行去噪,通过引入Gamma校正改进CLAHE算法,进而对红外图像进行对比度增强。检测电气设备发热缺陷的前提是准确识别并分类设备,其次,为了提高检测算法的精度,在原YOLOv5算法的基础上引入信息聚集和分发机制改进特征融合模块,增强了多尺度特征融合能力,同时引入Focal-CIoU损失函数,使算法更加关注高质量样本、抑制低质量样本,提升了模型的收敛速度。经验证,改进后的算法在自建数据集上的mAP为93.6%,较改进前提高了4.0个百分点。所提算法的mAP相比较Faster R-CNN、SSD、YOLOv3、YOLOv7 4种算法分别提高了4.5个百分点、6.1个百分点、4.7个百分点和3.5个百分点,且帧率达到32帧/秒,可以满足对电气设备的实时识别要求。
Abstract:
In order to make the detection method of heating defects of electrical equipment more perfect and improve the recognition accuracy of the algorithm for infrared images of electrical equipment, a method of infrared image detection of electrical equipment based on data enhancement and improved YOLOv5 was proposed. Firstly, for the problem of low signal-to-noise ratio and low contrast of infrared images of electrical equipment, a fast guided filtering algorithm was used to denoise the infrared images in the data set. The CLAHE algorithm was improved by introducing Gamma correction, and then the contrast of infrared images was enhanced. The premise of detecting the heating defects of electrical equipment was to accurately identify and classify the equipment. Then, in order to improve the accuracy of the detection algorithm, the information aggregation and distribution mechanism was introduced to improve the feature fusion module based on the original YOLOv5 algorithm, which enhanced the multi-scale feature fusion ability. Meanwhile, the Focal-CIoU loss function was also introduced to make the algorithm pay more attention to high-quality samples and suppress low-quality samples, which enhanced the rate of convergence for the model. It is verified that the mAP value of the improved algorithm on the self-built data set was 93.6%, which was 4.0 percentage point higher than that before the improvement. Compared with Faster R-CNN, SSD, YOLOv3 and YOLOv7, the mAP value of the proposed algorithm was increased by 4.5 percentage point, 6.1 percentage point, 4.7 percentage point and 3.5 percentage point respectively, and the frame rate reached 32 frames per second, which could meet the real-time recognition requirements of electrical equipment.

参考文献/References:

[1] MERADI S, LARIBI S, BOUSLIMANI S, et al. Analysis of failure in low-voltage terminal connections and fault classification in power transformer using infrared thermography [J]. Journal of Failure Analysis and Prevention, 2024, 24(2): 547-558.
[2] 肖懿, 罗丹, 蒋沁知, 等. 基于温度概率密度的变电站高压设备故障热红外图像识别方法 [J]. 高电压技术, 2022, 48(1): 307-318.
XIAO Y, LUO D, JIANG Q Z, et al. Thermal infrared image recognition method for high voltage equipment failure in substation based on temperature probability density [J]. High Voltage Engineering, 2022, 48(1): 307-318.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 580-587.
[4] GIRSHICK R. Fast R-CNN [C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 1440-1448.
[5] LIU W, ANGELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]//Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788.
[7] REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 6517-6525.
[8] REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08) [2025-02-01]. https: //arxiv. org/abs/1804. 02767.
[9] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. (2020-04-23) [2025-02-01]. https: //arxiv. org/abs/2004. 10934.
[10] CHENG Y, XIA L Z, YAN B, et al. A defect detection method based on faster RCNN for power equipment [J]. Journal of Physics: Conference Series, 2021, 1754(1): 012025.
[11] 王勋, 毛华敏, 李唐兵, 等. 基于迁移学习和R-FCN的电力设备红外图像识别算法 [J]. 传感器与微系统, 2021, 40(1): 147-150.
WANG X, MAO H M, LI T B, et al. Recognition algorithm for infrared image of power equipment based on transfer learning and R-FCN [J]. Transducer and Microsystem Technologies, 2021, 40(1): 147-150.
[12] 王永平, 张红民, 彭闯, 等. 基于YOLO v3的高压开关设备异常发热点目标检测方法 [J]. 红外技术, 2020, 42(10): 983.
WANG Y P, ZHANG H M, PENG C, et al. The target detection method for abnormal heating point of high-voltage switchgear based on YOLO v3 [J]. Infrared Technology, 2020, 42(10): 983.
[13] 李北明, 金荣璐, 徐召飞, 等. 基于特征蒸馏的改进Ghost-YOLOv5红外目标检测算法 [J]. 郑州大学学报(工学版), 2022, 43(1): 20-26.
LI B M, JIN R L, XU Z F, et al. An improved ghost-YOLOv5 infrared target detection algorithm based on feature distillation [J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(1): 20-26.
[14] 魏明军, 王模涵, 刘亚志, 等. 基于特征融合和混合注意力的小目标检测 [J]. 郑州大学学报(工学版), 2024, 45(3): 72-79.
WEI M J, WANG M H, LIU Y Z, et al. Small object detection based on feature fusion and mixed attention [J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(3): 72-79.
[15] HE K M, SUN J. Fast Guided Filter [EB/OL]. (2015-05-05) [2025-02-01]. https: //arxiv. org/abs/1505. 00996.
[16] 马敏慧, 王红茹, 王佳. 基于改进的MSRCR-CLAHE融合的水下图像增强算法 [J]. 红外技术, 2023, 45(1): 23-32.
MA M H, WANG H R, WANG J. An underwater image enhancement algorithm based on improved MSRCR-CLAHE fusion [J]. Infrared Technology, 2023, 45(1): 23-32.
[17] WANG C C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism [EB/OL]. (2023-09-20) [2025-02-01]. https: //arxiv. org/abs/2309. 11331.
[18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 2999-3007.
[19] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 7464-7475.

相似文献/References:

[1]李北明,金荣璐,徐召飞,等.基于特征蒸馏的改进Ghost-Yolov5红外目标检测算法[J].郑州大学学报(工学版),2022,43(01):20.[doi:10.13705/j.issn.1671-6833.2022.01.013]
 LI Beiming,JIN Ronglu,XU Zhaofei,et al.An Improved Ghost-YOLOv5 Infrared Target Detection Algorithm Based on Feature Distillation[J].Journal of Zhengzhou University (Engineering Science),2022,43(XX):20.[doi:10.13705/j.issn.1671-6833.2022.01.013]
[2]许珉,王侠,李耀,等.实用短路计算与电气设备选择一体化程序研究[J].郑州大学学报(工学版),2005,26(02):39.[doi:10.3969/j.issn.1671-6833.2005.02.010]
 Xu Min,Wang Xia,LI Yao,et al.Research on the integration of practical short circuit calculation and electrical equipment selection[J].Journal of Zhengzhou University (Engineering Science),2005,26(XX):39.[doi:10.3969/j.issn.1671-6833.2005.02.010]
[3]廖晓辉,谢子晨,路铭硕.基于 YOLOv5s 和 Android 部署的电气设备识别[J].郑州大学学报(工学版),2024,45(01):122.[doi:10.13705/j.issn.1671-6833.2024.01.004]
 LIAO Xiaohui,XIE Zichen,LU Mingshuo.Electrical Equipment Identification Based on YOLOv5s and Android Deployment[J].Journal of Zhengzhou University (Engineering Science),2024,45(XX):122.[doi:10.13705/j.issn.1671-6833.2024.01.004]

备注/Memo

备注/Memo:
收稿日期:2025-04-16;修订日期:2025-06-04
基金项目:国家自然科学基金资助项目(52277069) ;河南省自然科学基金资助项目(232300421198)
作者简介:廖晓辉(1972— ) ,女,湖北孝感人,郑州大学副教授,主要从事人工智能优化算法及应用、虚拟现实变电站仿真等研究 E-mail: Liaoxiaohui0001@zzu.edu.cn。
更新日期/Last Update: 2026-01-15