[1]张 蓓,郭煜丰,钟燕辉,等.融雪盐环境下低放热高聚物材料的冻融损伤特征[J].郑州大学学报(工学版),2025,46(06):127-134.[doi:10.13705/j.issn.1671-6833.2025.06.011]
 ZHANG Bei,GUO Yufeng,ZHONG Yanhui,et al.Freeze-thaw Damage Characteristics of Low-exothermic Polymer Materials in Snow-melting Salt Environments[J].Journal of Zhengzhou University (Engineering Science),2025,46(06):127-134.[doi:10.13705/j.issn.1671-6833.2025.06.011]
点击复制

融雪盐环境下低放热高聚物材料的冻融损伤特征()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年06期
页码:
127-134
栏目:
出版日期:
2025-10-22

文章信息/Info

Title:
Freeze-thaw Damage Characteristics of Low-exothermic Polymer Materials in Snow-melting Salt Environments
文章编号:
1671-6833(2025)06-0127-08
作者:
张 蓓1 郭煜丰1 钟燕辉1 李晓龙1 刘剑阳2 王懿龙1
1.郑州大学 水利与交通学院,河南 郑州 450001;2.河南省中工设计研究院集团股份有限公司,河南 郑州 451460
Author(s):
ZHANG Bei1 GUO Yufeng1 ZHONG Yanhui1 LI Xiaolong1 LIU Jianyang2 WANG Yilong1
1.School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; 2.Henan Provincial Communications Planning & Design Institute Co., Ltd., Zhengzhou 451460, China
关键词:
低放热高聚物 盐溶液 冻融循环 损伤特征 损伤演化方程
Keywords:
low-exothermic polymer salt solutions freeze-thaw cycle damage characteristics damage evolution equation
分类号:
U418.5TU445TQ323
DOI:
10.13705/j.issn.1671-6833.2025.06.011
文献标志码:
A
摘要:
针对盐冻融环境对低放热高聚物材料的影响,研究了低放热高聚物材料在盐溶液(CaCl2、CH3 COOK)和纯水中冻融循环后的吸水率、质量和抗压强度的变化规律。首先,开展电镜扫描(SEM)试验,从微观角度分析材料的质量和抗压强度损失机理;最后,根据损伤力学理论,以质量损失率和抗压强度损失率为参量,推导损伤变量D,建立冻融损伤演化方程。结果表明:随着冻融循环次数增加,材料的吸水率先增加后略微减小,而质量和抗压强度逐渐减小,表明材料受到一定的冻融损伤,冻融损伤来自材料内部胞体结构的变形和破裂;材料在盐溶液,尤其是CaCl2溶液中的冻融损伤更大;冻融200次后,不同密度试件在CaCl2溶液中的平均质量损失和平均强度损失分别约为纯水中的1.7倍和1.5倍,密度越大,材料的抗冻融能力越强。
Abstract:
To address the influence of salt freeze-thaw environment on low-exothermic polymer materials, an investigation was conducted to explore the water absorption, mass, and compressive strength of these materials following exposure to freeze-thaw cycles in salt solutions (CaCl2 and CH3 COOK) and pure water. Scanning electron microscopy (SEM) analysis was employed to elucidate the mechanisms underlying the loss of mass and compressive strength in the materials from the microscopic point of view. Finally, based on the principles of damage mechanics, the damage variable D was determined using the mass loss rate and compressive strength loss rate as parameters. Subsequently, an evolution equation for freeze-thaw damage was established. The results indicated that as the number of freeze-thaw cycles increased, the water absorption rate of the material initially rose and then decreased slightly, while its mass and compressive strength gradually declined, suggesting that the material was subjected to certain freeze-thaw damage, and the freeze-thaw damage originated from the deformation and rupture of the cellular structure within the material. The materials suffered more severe freeze-thaw damage in salt solutions, especially in CaCl2 solutions. After 200 freeze-thaw cycles, the average mass loss and average strength loss of samples with different densities in CaCl2 solution were about 1.7 times and 1.5 times of those in pure water, respectively, furthermore, the higher the density of the material, the stronger its freeze-melt resistance.

参考文献/References:

[1]唐丽云, 邵海涛, 唐华明, 等. 寒区道路桥梁融雪除冰技术研究综述[J]. 中外公路, 2024, 44(5): 2538. 

TANG L Y, SHAO H T, TANG H M, et al. Review of snow and ice melting techniques for road and bridge in cold regions[J]. Journal of China & Foreign Highway, 2024, 44(5): 25-38. 
[2]张文刚, 王芳, 丁龙亭. 融雪盐对沥青混合料的腐蚀作用研究[J]. 郑州大学学报(工学版), 2021, 42 (1): 77-81. 
ZHANG W G, WANG F, DING L T. Corrosion behavior of melting snow salt on asphalt mixtures[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42 (1): 77-81. 
[3]潘家诚. 融雪盐溶液冻融循环作用下沥青混合料路用性能研究[J]. 西部交通科技, 2022(7): 60-62, 96. 
PAN J C. Study on road performance of asphalt mixture under freeze-thaw cycle of snowmelt salt solution[J]. Western China Communications Science & Technology, 2022(7): 60-62, 96. 
[4]闫景晨, 李瀚翔. 盐冻融和重复荷载作用下沥青混凝土开裂的细观分析[J]. 建筑材料学报, 2021, 24 (4): 774-780. 
YAN J C, LI H X. Mesoscopic analysis on cracking of asphalt concrete under repeated load and salt freeze-thaw action[J]. Journal of Building Materials, 2021, 24(4): 774-780. 
[5]YU H W, HAO F F, YI P P, et al. Experimental investigation on the effect of salt solution on the soil freezing characteristic curve for expansive soils[J]. Sustainability, 2024, 16(1): 363. 
[6]赵烨城. 高聚物注浆技术在高速公路养护维修中的应用[J]. 工程建设与设计, 2024(18): 167-169. 
ZHAO Y C. Application of polymer grouting technology in highway maintenance[J]. Construction & Design for Engineering, 2024(18): 167-169. 
[7]钟科, 王雪, 张勐, 等. 单组份聚氨酯固化规律及黏结特性研究[J]. 郑州大学学报(工学版), 2021, 42 (6): 80-84, 92. 
ZHONG K, WANG X, ZHANG M, et al. Curing and adhesive characteristics of monocomponent polyurethane binders[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(6): 80-84, 92. 
[8]GAO X N, HUANG W, YA W, et al. Experiment and modeling for compressive strength of polyurethane grout materials[J]. Acta Materiae Compositae Sinica, 2017, 34(2): 438-445. 
[9]WANG Z Y, DU M R, FANG H Y, et al. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression[J]. Construction and Building Materials, 2021, 301: 124092. 
[10] ZHANG B, WANG B L, ZHONG Y H, et al. Experimental study on reducing the heat of curing reaction of polyurethane polymer grouting material[J]. Advances in Polymer Technology, 2021, 2021(1): 9954498.
[11] ZHANG B, WANG B L, ZHONG Y H, et al. Damage characteristics and microstructures of low-exothermic polymer grouting materials under F-T cycles[J]. Construction and Building Materials, 2021, 294: 123390. 
[12] ZHAO L G, WANG C J, GUO C C, et al. Properties of Low-Exothermic polymer grouting materials and its application on highway[J]. Construction and Building Materials, 2023, 408: 133771. 
[13] LIU Z C, HANSEN W. Freezing characteristics of air-entrained concrete in the presence of deicing salt[J]. Cement and Concrete Research, 2015, 74: 10-18. 
[14]WANG J, GAO S, ZHANG C, et al. Preparation and performance of water-active polyurethane grouting material in engineering: a review[J]. Polymers, 2022, 14(23): 5099. 
[15] MA F R, ZHANG Y S, QIAO H X, et al. Analysis of damage models and mechanisms of mechanical sand concrete under composite salt freeze-thaw cycles[J]. Construction and Building Materials, 2024, 429: 136311. 
[16]郑武西, 区桦, 宗炜, 等. 道路融雪剂“精细化” 使用技术研究与应用[J]. 公路, 2022, 67(1): 344-348. 
ZHENG W X, OU H, ZONG W, et al. Research and application of “fine” application technology of road snow melting agent[J]. Highway, 2022, 67(1): 344-348. 
[17]朱本清, 余红发, 巩旭, 等. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 169-175. 
ZHU B Q, YU H F, GONG X, et al. Relationship between bond strength of concrete interface and meso-mechanical properties of interface transition zone under freezing-thawing action of deicing salt[J]. Materials Reports, 2024, 38(5): 169-175. 
[18]中华人民共和国交通部. 公路水泥混凝土路面养护技术规范: JTJ 073.1—2001[S]. 北京: 人民交通出版社, 2001. 
Ministry of Transport of the People′s Republic of China. Technical specifications of cement concrete pavement maintenance for highway: JTJ 073.1—2001[S]. Beijing: China Communications Press, 2001. 
[19] XU G, YU Y H, CAI D G, et al. Multi-scale damage characterization of asphalt mixture subject to freeze-thaw cycles[J]. Construction and Building Materials, 2020, 240: 117947.

更新日期/Last Update: 2025-10-21