[1]张博强,郭晓静,田华良,等.基于液冷的特种车辆电池流道结构优化设计[J].郑州大学学报(工学版),2026,47(XX):1-9.[doi:10. 13705 / j. issn. 1671-6833. 2025. 03. 025]
 ZHANG Boqiang,GUO Xiaojing,TIAN Hualiang,et al.Design of Battery Channel Structure for Special Vehicles Based on Liquid Cooling[J].Journal of Zhengzhou University (Engineering Science),2026,47(XX):1-9.[doi:10. 13705 / j. issn. 1671-6833. 2025. 03. 025]
点击复制

基于液冷的特种车辆电池流道结构优化设计()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年XX
页码:
1-9
栏目:
出版日期:
2026-09-10

文章信息/Info

Title:
Design of Battery Channel Structure for Special Vehicles Based on Liquid Cooling
作者:
张博强1郭晓静1田华良2张美玥1李家澳1宋珂3
1.河南工业大学 机电工程学院,河南 郑州 450001 ;2.郑州新大方重工科技有限公司,河南 郑州 450064;3.同济大学 汽车学院,上海 201804
Author(s):
ZHANG Boqiang1 GUO Xiaojing1 TIAN Hualiang2 ZHANG Meiyue1 LI Jiaao1 SONG Ke3
1. School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; 2. Zhengzhou New Dafang Heavy Industry Science & Technology Co., Ltd, Zhengzhou 450064, China; 3. School of Automotives Studies , Tongji University, Shanghai 201804, China
关键词:
电池热管理散热效果压力损失流道结构正交试验设计
Keywords:
thermal management heat dissipation effect pressure loss flow channel structure orthogonal experimental design
分类号:
TM912
DOI:
10. 13705 / j. issn. 1671-6833. 2025. 03. 025
文献标志码:
A
摘要:
在特种车辆复杂工况下的运行过程中,电池过热问题是制约其性能与安全性的关键因素之一。基于动静脉毛细血管具有营养物质输送能力的启发,设计了一种新型血管仿生流道结构,利用计算流体力学数值计算方法对电池模组进行瞬态模拟,并借助试验平台对仿真模型进行初步验证,实现不同结构方案的对比分析,深入探究液冷板散热效果及压力损失与结构参数、冷却介质、放电倍率和环境温度之间的关联特性,并基于正交试验实现液冷板结构优化设计。结果表明:新型流道相较于平行流道结构,其散热性能得到有效提升,压力损失降低40.7%;冷却介质的物性参数直接影响着其散热性能和压力损失,质量流量入口流速增加可提升冷板散热效果,在流速30 L/min后随着持续增加改善效果受限;在38 ℃至70 ℃工作环境温度下,电池模组最高温度在45 ℃上下,表面温差小于2 ℃,均处于合理范围内。本研究有助于推动不同环境下特种车辆电池热管理技术的应用,为提高电池包温度均匀性和冷却速率、降低能耗的研究提供数据支撑。
Abstract:
The issue of battery overheating is one of the key factors limiting the performance and safety of special vehicles operating under complex conditions. To address this, inspired by the nutrient delivery capabilities of arterial and venous capillaries, this paper designs a novel vascular biomimetic flow channel structure. Using computational fluid dynamics (CFD) numerical simulation methods, transient simulations of the battery module are conducted, and a preliminary validation of the simulation model is performed using an experimental platform. This allows for a comparative analysis of different structural schemes and an in-depth exploration of the relationship between the heat dissipation effect of the liquid-cooled plate, pressure loss, structural parameters, cooling media, discharge rates, and environmental temperatures. And based on orthogonal experimental design, an optimized design of the liquid-cooled plate structure was achieved. The results indicate that the novel channel structure significantly enhances cooling performance compared to parallel channel structures, achieving a 40.7% reduction in pressure loss. The physical properties of the cooling medium directly affect its cooling performance and pressure loss, and increasing the inlet flow rate of the mass flow improves the cooling effect of the cold plate, though the improvement becomes limited after a flow rate of 30 L/min. Under working environment temperatures ranging from 38℃ to 70℃, the maximum temperature of the battery module remains around 45℃, with a surface temperature difference of less than 2℃, all within a reasonable range. This study contributes to advancing the application of battery thermal management technology in special vehicles under various environmental conditions, providing data support for research aimed at improving battery pack temperature uniformity and cooling rates while reducing energy consumption.

参考文献/References:

[1] FENG X N, ZHENG S Q, REN D S, et al. Key characteristics for thermal runaway of Li-ion batteries[J]. Energy Procedia, 2019, 158: 4684-4689.
[2] 何闯, 赵钦新, 梁志远. 具有扰流结构的风冷型锂电池包热管理系统优化[J]. 郑州大学学报(工学版), 2025, 46(1): 90-97.
HE C, ZHAO Q X, LIANG Z Y. Performance optimization of air-cooled lithium battery pack thermal management system with turbulence structure[J]. Journal of Zhengzhou University (Engineering Science), 2025, 46(1): 90-97.
[3] 黄瑞, 舒雷, 陈俊霞, 等. 特种车辆电池热管理设计与实验研究[J]. 实验技术与管理, 2024, 41(7): 30-36.
HUANG R, SHU L, CHEN J X, et al. Design and experimental study of battery thermal management for special vehicles[J]. Experimental Technology and Management, 2024, 41(7): 30-36.
[4] AN Z G, ZHANG C J, LUO Y S, et al. Cooling and preheating behavior of compact power Lithium-ion battery thermal management system[J]. Applied Thermal Engineering, 2023, 226: 120238.
[5] JIN L W, LEE P S, KONG X X, et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113: 1786-1794.
[6] SAMEER MAHMOUD N, MOHAMMAD JAFFAL H, ABDULNABI IMRAAN A. Performance evaluation of serpentine and multi-channel heat sinks based on energy and exergy analyses[J]. Applied Thermal Engineering, 2021, 186: 116475.
[7] HUANG Y Q, MEI P, LU Y J, et al. A novel approach for Lithium-ion battery thermal management with streamline shape minichannel cooling plates[J]. Applied Thermal Engineering, 2019, 157: 113623.
[8] PARK H. A design of air flow configuration for cooling lithium-ion battery in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 239: 30-36.
[9] MONDAL B, LOPEZ C F, MUKHERJEE P P. Exploring the efficacy of nanofluids for lithium-ion battery thermal management[J]. International Journal of Heat and Mass Transfer, 2017, 112: 779-794.
[10] 郭茶秀, 魏金宇. 电池排布方式对21700锂电池相变热管理系统的影响[J]. 郑州大学学报(工学版), 2023, 44(2): 91-97.
GUO C X, WEI J Y. Influence of different arrangement on phase change thermal management system of 21700 lithium battery[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(2): 91-97.
[11] 吴怡逸, 王杰, 周小淞. 大功率半导体发光二极管液冷板散热性能分析[J]. 科学技术与工程, 2023, 23(27): 11632-11638.
WU Y Y, WANG J, ZHOU X S. Heat dissipation performance analysis of high-power LED liquid-cooled cold plate[J]. Science Technology and Engineering, 2023, 23(27): 11632-11638.
[12] 杨孝才, 贾秋红, 屈翔, 等. 操作参数对质子交换膜燃料电池冷却效果分析[J]. 郑州大学学报(工学版), 2022, 43(4): 53-59.
YANG X C, JIA Q H, QU X, et al. Analysis of cooling effect of operating parameters on proton exchange membrane fuel cells[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(4): 53-59.
[13] 李君浩, 任晓龙, 杨炯, 等. 锂电池新型波形微流道传热特性研究及结构优化[J]. 西安交通大学学报, 2024, 58(11): 14-26.
LI J H, REN X L, YANG J, et al. Research on heat transfer characteristics and structural optimization of new waveform microchannels for lithium-ion batteries cooling plates[J]. Journal of Xi’an Jiaotong University, 2024, 58(11): 14-26.
[14] 张斌洋, 任晓龙, 赵江铭, 等. 锂离子电池双螺旋结构流道液冷板数值优化[J]. 储能科学与技术, 2024, 13(10): 3545-3555.
ZHANG B Y, REN X L, ZHAO J M, et al. Numerical optimization of a liquid cooling plate with double helix flow channel for lithium-ion battery[J]. Energy Storage Science and Technology, 2024, 13(10): 3545-3555.
[15] 孔为, 金劲涛, 陆西坡, 等. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265.
KONG W, JIN J T, LU X P, et al. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel[J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265.
[16] SIRUVURI S D V S S V, BUDARAPU P R. Studies on thermal management of Lithium-ion battery pack using water as the cooling fluid[J]. Journal of Energy Storage, 2020, 29: 101377.
[17] 李志强, 孙广强, 巴义春, 等. 锂离子电池仿生叶脉流道冷板散热研究[J]. 低温与超导, 2023, 51(8): 69-75.
LI Z Q, SUN G Q, BA Y C, et al. Research on heat dissipation of lithium-ion battery pack based on bionic leaf vein channel cold plate[J]. Cryogenics & Superconductivity, 2023, 51(8): 69-75.
[18] FAN Y W, WANG Z H, FU T, et al. Numerical investigation on lithium-ion battery thermal management utilizing a novel tree-like channel liquid cooling plate exchanger[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122143.
[19] DENG T, RAN Y, ZHANG G D, et al. Novel leaf-like channels for cooling rectangular lithium ion batteries[J]. Applied Thermal Engineering, 2019, 150: 1186-1196.
[20] 李仁帅, 付婷, 张峰, 等. 仿生鱼骨流道液冷电池热管理系统性能研究[J]. 低温工程, 2024(4): 40-46.
LI R S, FU T, ZHANG F, et al. Research on heat management system of bionic fish bone flow[J]. Cryogenics, 2024(4): 40-46.
[21] 刘显茜, 曹军磊, 李文辉, 等. 蜘蛛网流道冷板冷却液对流向锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 14-19.
LIU X X, CAO J L, LI W H, et al. Analysis of lithium ion battery heat dissipation with coolant counter current in spider web channel cooling plate[J]. Materials Reports, 2024, 38(4): 14-19.
[22] 何平, 卢浩, 范益伟, 等. 工字形流道液冷板式换热器用于电池热管理的数值研究[J]. 制冷学报, 2023, 44(5): 78-87.
HE P, LU H, FAN Y W, et al. Numerical investigation of battery thermal management using liquid-cooling plate exchanger with I-shaped flow channel[J]. Journal of Refrigeration, 2023, 44(5): 78-87.
[23] WANG Y C, XU X B, LIU Z W, et al. Optimization of liquid cooling for prismatic battery with novel cold plate based on butterfly-shaped channel[J]. Journal of Energy Storage, 2023, 73: 109161.
[24] YUAN J F, GU Z J, BAO J, et al. Structure optimization design and performance analysis of liquid cooling plate for power battery[J]. Journal of Energy Storage, 2024, 87: 111517.
[25] 蔡保全. 某装备液压集成块流道液流特性分析及优化设计[D]. 武汉: 华中科技大学, 2011.
CAI B Q. Analysis and optimization design of liquid flow characteristics in the channel of hydraulic manifold block of an equipment[D]. Wuhan: Huazhong University of Science and Technology, 2011.
[26] 陈皓, 赵福云, 谭赞成, 等. 锂离子电池液冷管路优化[J]. 湖南工业大学学报, 2023, 37(5): 44-51.
CHEN H, ZHAO F Y, TAN Z C, et al. Optimization of liquid cooling pipeline for lithium-ion batteries[J]. Journal of Hunan University of Technology, 2023, 37(5): 44-51.
[27] 薛超坦. 基于液冷的纯电动汽车锂电池热管理研究[D]. 长春: 吉林大学, 2017: 25-30.
XUE C T. Research on thermal management of lithium battery for pure electric vehicle based on liquid cooling[D]. Changchun: Jilin University, 2017: 25-30.
[28] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1984, 132(1): 5-12.
[29] LIU Z, ZHAO H X, QIU Y, et al. Numerical analysis of topology-optimized cold plates for thermal management of battery packs[J]. Applied Thermal Engineering, 2024, 238: 121983.
[30] FU P, FANG L W, JIAO S Y, et al. Numerical simulation of immersed liquid cooling system for lithium-ion battery thermal management system of new energy vehicles[J]. Energies, 2023, 16(22): 7673.

备注/Memo

备注/Memo:
收稿日期:2025-02-10;修订日期:2025-03-17
基金项目:国家自然科学基金资助项目(52072265) ;河南省重点研发专项(231111241100)
作者简介:张博强(1979— ) ,男,河 南信阳人,河南工业大学正高级工程师,博士,主要从事智能网联汽车、新能源汽车技术等方面的研究,E-mail: zhangboqiang@haut.edu.cn。
更新日期/Last Update: 2026-01-14